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Direct observation of atmospheric 
turbulence with a video-rate wide-field 
wavefront sensor
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Turbulence is a complex and chaotic state of fluid motion. Atmospheric 
turbulence within the Earth’s atmosphere poses fundamental challenges for 
applications such as remote sensing, free-space optical communications 
and astronomical observation due to its rapid evolution across temporal and 
spatial scales. Conventional methods for studying atmospheric turbulence 
face hurdles in capturing the wide-field distribution of turbulence due to 
its transparency and anisoplanatism. Here we develop a light-field-based 
plug-and-play wide-field wavefront sensor (WWS), facilitating the direct 
observation of atmospheric turbulence over 1,100 arcsec at 30 Hz. The 
experimental measurements agreed with the von Kármán turbulence 
model, further verified using a differential image motion monitor. Attached 
to an 80 cm telescope, our WWS enables clear turbulence profiling of three 
layers below an altitude of 750 m and high-resolution aberration-corrected 
imaging without additional deformable mirrors. The WWS also enables 
prediction of the evolution of turbulence dynamics within 33 ms using a 
convolutional recurrent neural network with wide-field measurements, 
leading to more accurate pre-compensation of turbulence-induced errors 
during free-space optical communication. Wide-field sensing of dynamic 
turbulence wavefronts provides new opportunities for studying the 
evolution of turbulence in the broad field of atmospheric optics.

As pointed out by Richard P. Feynman, turbulence is the most important 
unsolved problem of classical physics1. Atmospheric turbulence, in par-
ticular, affects the propagation path of light due to the non-uniform dis-
tribution of refractive index, resulting in severe wavefront aberrations2. 
Such spatially non-uniform aberrations decrease the signal-to-noise 
ratio and spatial resolution of optical systems, making atmospheric 
turbulence a fundamental obstacle in free-space optical communi-
cations3,4, astronomical imaging5,6 and remote sensing7,8. However, a 
comprehensive numerical description remains elusive and there is a 

lack of instrumentation that is capable of quantitatively observing the 
dynamic atmospheric turbulence across a broad field5. This stems from 
the fact that atmospheric turbulence is transparent and anisoplanatic, 
rendering existing techniques insufficient9,10.

Various efforts have been invested over past decades. Schlieren 
imaging11–13 with a coherent light source can qualitatively increase 
the contrast of refractive-index changes within transparent gases. By 
contrast, methods such as using a differential image motion monitor 
(DIMM)14–16, lidar-based Doppler radar detection17–19, temperature 
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systems predominantly rely on Shack–Hartmann wavefront sensors 
(SHWS). Although recent advancements have introduced the plenop-
tic wavefront sensor24,25 and various innovative methods have aimed 
at expanding the dynamic range and enhancing the sensing perfor-
mance26,27, these developments focus primarily on the measurement 
contaminated by a single isoplanatic aberration within a relatively 
small field of view (FOV) and do not effectively address anisoplanatism.  
To tackle this issue, researchers have ventured into advanced tech-
niques such as multi-conjugate adaptive optics and ground-layer 
adaptive optics28–30, using multiple wavefront sensors to broaden the 
sensing field to approximately one arcminute. However, extending 

fluctuation techniques20,21 and image-based approaches using deep 
learning22 offer valuable quantitative assessments of atmospheric 
turbulence. These methods gauge the statistical strength of turbu-
lence, and involve parameters such as the Fried parameter r0 or the 
refractive-index structure constant Cn

2 (ref. 23), which characterize the 
averaged intensity of turbulence. However, these detection approaches 
fail to capture the instantaneous aberrated wavefronts, which is criti-
cal for real-time applications. Adaptive optics is a powerful technique 
that uses wavefront sensors, deformable mirrors and control sys-
tems to measure and correct aberrated wavefronts for incoherent 
light. In the realm of wavefront detection, traditional adaptive optics 
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Fig. 1 | Principle of the WWS. a, Schematic of the atmospheric turbulence 
observation with a WWS. The WWS uses an MLA placed at the native image plane 
of the telescope, interpreting the aberrated wavefront into distorted subaperture 
images resulting from the anisoplanatism of atmospheric turbulence. fMLA, focal 
length of MLA. b,c, Optical diagram of a traditional SHWS (b) and a WWS (c), 
where the black arrows denotes the view direction for the detected wavefront. 
In the SHWS, the range of atmospheric detection remains consistent across 
different altitudes for a small FOV. For the WWS, the range of atmospheric 
detection expands with increasing altitude due to the large FOV. The orange 
stars in (b) and (c) represent the observation targets. d, Principle of the WWS 

for isoplanatic aberration. Each isoplanatic aberration can be approximated 
as multiple segmented linear phase modulations, leading to lateral shifts of 
subaperture images. The different colours correspond to different subapertures. 
e, Pipeline of atmospheric turbulence observation with the WWS. The sparse 
orange points marked on the leftmost expanded subaperture image are referred 
to as control points, with each corresponding to an isoplanatic sub-FOV. The 
slope maps of each region are calculated using a high-speed coarse-to-fine slope-
estimation algorithm from all of the subapertures and projected into wavefronts 
by a pretrained multilayer perceptron (MLP) network. Ref. represents the 
reference subaperture image for slope estimation. Scale bars, 72 arcsec.
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the field beyond this scale while preserving high precision remains  
challenging9. Furthermore, the intricate optical configurations in these 
techniques often lead to bulky system designs and high costs. Recently, 
we developed digital adaptive optics to estimate and correct spatially 
non-uniform aberrations through a meta-imaging sensor31. However, 
the iterative reconstruction process incurs substantial computational 
costs, hindering its practical application in the real-time observation 
of dynamic turbulence.

Here we report a light-field-based plug-and-play wide-field wave-
front sensor (WWS), facilitating the direct observation of atmospheric 
turbulence across a wide FOV spanning 1,100 arcsec at video rate 
(30 Hz). A coarse-to-fine slope-estimation algorithm was developed 
to detect spatially non-uniform wavefronts with light-field measure-
ments at both high precision and high speed. The extended FOV enables 
successful profiling of the surface-layer turbulence (<750 m altitude) 
to distinguish three layers with an altitude resolution of up to 43 m. On 
the basis of Taylor’s ‘frozen flow’ hypothesis, we can predict the evolved 
turbulence dynamics in advance of 33 ms using a convolutional recur-
rent neural network with wide-field measurements, which will lead 
to a more accurate pre-compensation of turbulence-induced errors 
during free-space optical communications. Compared with traditional 
wavefront sensors, we obtain a remarkable 195 nm reduction in the root 
mean squared error (RMSE) of the predicted wavefronts at the central 
wavelength of 525 nm. The WWS is highly efficient and cost-effective, as 
it requires no modification of the major optical systems but only equip-
ment installation on the native image plane. Our method is anticipated 
to disclose the evolutionary mechanisms of atmospheric turbulence, 
paving the way towards widespread applications.

Results
Principle of the WWS
Atmospheric turbulence can be regarded as spatially variant aber-
rations that manifest themselves as phase modulations of the pupil 
plane. Conventional imaging devices are limited to detecting the 
intensity information of three-dimensional (3D) scenes projected 
onto a two-dimensional (2D) sensor, and are unable to capture phase 
disturbances. To overcome this limitation, WWS uses a microlens  
array (MLA) at the image plane with a complementary metal–oxide–
semiconductor (CMOS) sensor placed at the back focal plane of the MLA 
to detect the spatial variance of the coherence in a parallel way (Fig. 1a). 
In contrast to traditional wavefront sensors such as SHWS, which are 
typically placed at the conjugated pupil plane to detect the average 
wavefront within a small FOV (Fig. 1b), WWS is directly placed on the 
native image plane to obtain the wavefront information across a large 
FOV. In this set-up, each microlens samples the wavefront from a dif-
ferent FOV, effectively minimizing cross-talk. The wavefront captured 
along each view direction (corresponding to a local FOV) is a projection 
of atmospheric turbulence at various altitudes (Fig. 1c). On arrival of 
the incident light at each localized region of the MLA, it is decoupled 
into different angles and mapped onto different sensor pixels at the 
back focal plane, corresponding to different subapertures (Fig. 1a). 
Subsequently, the subaperture images can be formed by extracting 
and recombining pixels at the same relative position behind differ-
ent microlenses together. This process is called pixel realignment32 
(Extended Data Fig. 1a).

During imaging, turbulence introduces different aberrated wave-
fronts at the pupil plane for different local isoplanatic regions. For 
each sub-FOV with an isoplanatic aberration, the wavefront can be 
approximated as multiple segmented linear phase modulations at 
different subapertures, resulting in different lateral shifts for different 
subaperture images (Fig. 1d). The lateral shifts are proportional to the 
local slope of each segmented wavefront (see detailed derivation in the 
Methods). When the aberrations are distributed across the wide FOV 
in a spatially variant manner, we can observe continuous distortions 
across each subaperture image. In contrast to the plenoptic wavefront 

sensor, considering an averaged slope value for a local region, we have 
developed a coarse-to-fine slope-map estimation strategy for the 
calculation of anisoplanatic turbulence. The slope map is continuous 
and characterized by a few sparsely distributed control points, each of 
which represents an isoplanatic sub-FOV. Initially, we select a reference 
subaperture image and calculate the overall shifts for all of the control 
points across other subaperture images. Subsequently, we perform a 
precise computation of the subpixel translation for each individual 
control point (Fig. 1e and Extended Data Fig. 1b). The quantity of sparse 
control points is adjustable based on the required isoplanatic sub-FOV 
size, typically around 10 arcsec in the visible spectrum. Moreover, 
increasing the number of sub-FOVs does not lead to higher computa-
tional costs (Extended Data Fig. 1c). After successfully acquiring the 
slope maps, we can reconstruct the turbulence wavefronts by project-
ing these maps onto Zernike polynomials. This projection is facilitated 
using a pretrained MLP network, which offers a simplified alternative 
to more complex architectures (Fig. 1e and Methods). This approach 
balances precision with computational efficiency, making the WWS 
suitable for video-rate observations (Extended Data Fig. 2).

To determine the optimal parameters of the MLA, the sensor pixel 
size is first chosen according to the diffraction limit resolution. Then, a 
larger pitch size of each microlens with the fixed pixel size leads to more 
subapertures, generating a denser sampling of the wavefront. However, 
a larger pitch size also reduces the spatial resolution of each subaper-
ture image, compromising the accuracy of the slope-map estimation. 
We conduct a numerical simulation to identify the ideal configuration, 
which indicated that each microlens covering 15 × 15 pixels offers the 
best performance for aberration estimation and correction (Extended 
Data Fig. 3a,b).

Characterization of the WWS
To quantitatively evaluate the WWS, we conducted both simulations 
and imaging experiments. We first simulated the images captured 
by the WWS under anisoplanatic atmospheric turbulence (Extended 
Data Fig. 3c,d). Unlike our previous meta-imaging sensor that required 
multiple frames with lateral shifting to enhance the precision of 
aberration estimation, the WWS leverages previous knowledge that 
turbulence-induced distortion varies smoothly and continuously. 
As a result, the WWS achieves a comparable performance with sub-
pixel accuracy using only a single snapshot (Fig. 2a and Extended Data 
Fig. 3d,e). This capability is crucial for capturing the dynamics of tran-
sient turbulence. By calculating the slopes with a global distribution of 
textures instead of local image features around several pixels, the WWS 
also demonstrates strong noise robustness, even for a signal-to-noise 
ratio as low as 10 dB (Extended Data Fig. 4). We also compared the per-
formance of our method with that of a correlating Shack–Hartmann 
wavefront sensor (C-SHWS; see detailed simulation parameters in 
the Methods33,34). The WWS shows a comparable performance to the 
C-SHWS across the entire FOV (Fig. 2b), but the C-SHWS is still limited 
to sensing a single isoplanatic region at a time (Extended Data Fig. 5). 
Through parallel computing using multiple graphical processing units, 
our WWS achieves wavefront sensing across an FOV of 1,100 arcsec in 
under 30 ms, enabling the video-rate observation of a wide range of 
atmospheric turbulence. This speed is over 10,000 times faster than 
in previous studies31,35 (Fig. 2c).

To further validate the performance, we conducted imaging 
experiments of the lunar surface using the 80 cm Tsinghua-National 
Astronomical Observatories of China (Tsinghua-NAOC) telescope. 
Turbulence-induced scanning (TIS) is proposed for the WWS to 
enhance the spatial sampling rate of subaperture images using the 
intrinsic tip–tilt components when imaging through the turbulence 
(see Methods and Extended Data Fig. 6a,b). TIS can effectively elimi-
nate the motion artefacts due to the turbulence dynamics without the 
need for active scanning (Extended Data Fig. 7a–e). The reconstructed 
turbulent wavefronts can then be applied directly in the incoherent 
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Fig. 2 | Characterization of the WWS. a, Wavefront sensing performance 
of the WWS against different spatial resolutions of subaperture images. 1 × 1 
represents the snapshot light-field measurement with inherent spatial resolution 
loss caused by the MLA. 5 × 5 and 15 × 15 represent the scanning light-field 
measurements with less resolution loss for each subaperture image, where the 
number of spatially variant aberrations, n, is 70. The parameter σ is calculated 
via the ratio of the residual phase root mean squared (RMS) to the peak-to-valley 
value of the added aberration. λ is the wavelength. b, Performance comparison 
of the WWS and C-SHWS under different degrees of atmospheric turbulence 
(n = 70). In a and b, the box plots show the median, 25% and 75% quartiles and 
the maximum and minimum values excluding any outliers. c, Comparison of 
computational time in wavefront sensing across an FOV of 1,100 arcsec  

(19 × 25 sub-FOVs) between the meta-imaging sensor (meta sensor)31 and the WWS.  
d,e, Performance evaluations of TIS and wavefront correction when imaging 
different areas of the lunar surface through atmospheric turbulence. Results from 
the 2D sensor (top left) and meta-imaging sensor31 (bottom left) are presented 
as the baseline for each area. w/, with; w/o, without. The red boxes represent the 
final imaging results of WWS with both the aberration correction and TIS. The 
colour scale for the wavefront error in e also applies to d. Scale bars, 15 arcsec. 
f,g, Kymograph space–time (x–t) plots along the dashed line marked in e via 
traditional 2D imaging (f) and using the WWS (g), each at 15 Hz, lasting for 60 s. 
Scale bars, 15 arcsec (vertical) and 4 s (horizontal). h, Structural similarity index 
(SSIM) values of f and g compared with the corresponding kymograph result 
obtained using the meta-imaging sensor, yielding 0.735 and 0.964, respectively.
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synthetic aperture algorithm31 to achieve high-resolution imaging, 
with a comparable performance to previous iterative algorithms but 
a much faster speed. Both contrast and resolution outperformed the 
traditional 2D imaging without the need for additional deformable 
mirrors (Fig. 2d,e). To further demonstrate the stability in long-term 
sensing scenarios, we plotted a 60 s (15 Hz, 900 frame) kymograph 
(Fig. 2f–h) of the dashed white line in Fig. 2e. As the reconstruction 
performance is very sensitive to the accuracy of aberration estimation, 
our results further validate the precision of wavefront sensing achieved 
using the WWS, facilitating high-speed aberration-corrected imaging 
across a wide FOV with low computational costs.

Observation of wide-field atmospheric turbulence
Observing wide-field atmospheric turbulence has long been a challenge. 
With WWS, we can now achieve the direct observation of atmospheric 
turbulence evolution over 1,100 arcsec (each sub-FOV covers 36 × 36 arc-
sec for better visualization in Fig. 3a and Supplementary Video 1). The 
frozen-flow characteristics36–39 of turbulence can be clearly observed as 
the phenomenon gradually moves from the upper right to the lower left 
(Fig. 3a). The finer version in Fig. 3b offers a more detailed revelation of 
the atmospheric distribution (each sub-FOV covers 18 × 18 arcsec). To ana-
lyse the turbulence statistics, we calculated the inter-mode normalized 
covariance matrix (Fig. 3c and Methods) of the 4th–35th Zernike-mode 
coefficients (according to Noll40) based on 1,000 frames of the experi-
mental measurements (Supplementary Table 1). The experimental 
covariance matrix accords well with the von Kármán turbulence model 
(Methods and Supplementary Table 2) with a 10 m outer scale (Fig. 3d 
and Extended Data Fig. 8)41,42, further demonstrating the effectiveness 
of our method. In addition, we conducted a statistical analysis of the 
atmospheric turbulence wavefronts at different time intervals (Fig. 3e). 
For each interval, we can obtain a 2D distribution of the Fried parameter 
r0 across the FOV, which indicates the spatial variance of the turbulence 
strength (insets in Fig. 3e). Our results show quite a uniform distribution 
of r0 across nearly 1,000 arcsec during the observation period. Then, we 
compared our observations obtained from 00:20 to 00:50 GMT + 8 on 
8 April 2023 (Xinglong Observatory) with DIMM measurements26,27. The 
absolute values of the two measurements are closely aligned and exhibit 
a similar trend of variation (Fig. 3e). However, owing to the differences in 
observation duration (each observation session lasted about 30 s for the 
WWS and around 1–2 min for the DIMM), the WWS measurements showed 
localized intensity oscillations, in line with the fluctuation characteristics 
of atmospheric turbulence. Furthermore, our method enabled dynamic 
analysis to explore the temporal evolution of atmospheric turbulence 
(Fig. 3f). The temporal correlation diminishes progressively as the time 
intervals increase, with the rate of decay influenced by various factors 
such as the wind speed and the optical aperture size of the telescope. 
It is important to note that post-decoherence atmospheric turbulence 
does not exhibit a perfectly zero-mean distribution, primarily due to the 
dome effect during the experiments43–45.

WWS measurements can also be effectively combined with meth-
ods such as slope detection and ranging (SLODAR) to achieve the pre-
cise profiling of atmospheric turbulence, restoring the 3D turbulence 
distribution46,47. Conventionally, SLODAR requires multiple SHWS pairs 
targeting various view directions or equipped on different telescopes 
to calculate the cross-correlations between their wavefronts48,49. A 
larger angular separation between each pair, denoted as δθ (Fig. 3b), 
introduces a larger baseline, enabling a finer altitude resolution δh 
for turbulence profiling, especially in near ground layers (Methods). 
In the meantime, more independent pairs with the same δθ yield 
more reliable results. Using our method, a single WWS can obtain 
large numbers of cross-correlation results for different δθ values. 
These diverse results can then be cross-referenced against each other, 
enhancing the performance of turbulence profiling. We selected 300 
frames of our experimental measurements with each sub-FOV cover-
ing 36 × 36 arcsec. The cross-correlations of wavefront slopes were 
computed and temporally averaged with various reference sub-FOVs 
(some results are shown in Fig. 3g). The intensity distributions along 
the orange dotted lines (Fig. 3g) indicate the variation in turbulence 
strength along different altitudes. Each δθ corresponds to 40 inde-
pendent sub-FOV pairs in our experiment, and the averaged profiles 
were plotted (Fig. 3h). As δθ was increased to 180 arcsec, we success-
fully recovered three turbulence peak profiles at distinct altitudes  
under 750 m.

Turbulence prediction with the WWS
The atmospheric turbulence results in signal fading and elevated bit 
error rates in free-space optical communication, thereby diminish-
ing the reliability of communication links. To address this problem, 
wavefront pre-compensation has been developed2. This technique 
involves wavefront sensing in the downlink, followed by wavefront 
compensation in the uplink (Fig. 4a). However, the time discrepancy δt 
between the uplink and downlink can introduce compensation errors 
due to the rapid spatiotemporal evolution of atmospheric turbulence. 
The wide-field measurements of the WWS make it feasible to predict 
the turbulence evolution on the basis of Taylor’s frozen-flow hypoth-
esis36,37 (Fig. 4b). It posits that the spatial movement of turbulence 
within a specific time window can be treated as a unified translation 
of the wavefronts:

φ ( ⃗r1, t2) = φ ( ⃗r1 − v⃗ (t2 − t1) , t1) = φ ( ⃗r2, t1) .

For a specific position ⃗r  within the entire FOV, t2 > t1 indicates dif-
ferent times, φ ( ⃗r, t) denotes the turbulence wavefront and v⃗ represents 
the transverse velocity. Conventional methods, however, are typically 
confined to detecting a local wavefront φ ( ⃗r1, t1) and v⃗ within a small 
FOV. Accurately predicting φ ( ⃗r1, t2) or φ ( ⃗r2, t1) on the basis of solely 
measuring φ ( ⃗r1, t1) is challenging due to the intricate and nonlinear 
characteristics of turbulence. Leveraging the wide-field measurements 

Fig. 3 | Wide-field atmospheric turbulence visualization and profiling.  
a, Continuous observation of atmospheric turbulence captured in five frames at 
30 Hz (FOV: 890 × 680 arcsec; sub-FOV: 36 × 36 arcsec). Green arrows highlight 
the observed frozen-flow phenomenon. Scale bar, 72 arcsec. b, Finer version 
of the first frame in a with 50 × 38 sub-FOVs, each covering 18 × 18 arcsec. 
Scale bar, 72 arcsec. The inset represents the zoom-in turbulence wavefront 
distribution of the sub-FOVs highlighted by the blue square. c, Normalized 
inter-mode covariance matrix of the 4th–35th Zernike from the experimental 
measurements observed using the WWS over 7,000 frames. d, Normalized 
covariance matrix of the simulated atmospheric turbulence, based on the von 
Kármán turbulence model with the outer scale L0 = 10 m. e, Comparison of the 
atmospheric turbulence strength between the results obtained using our WWS 
and the DIMM, where the insets show the 2D Fried parameter distributions 
across the FOV (612 arcsec (or ″)) at different time points. The experimental 
measurements were collected from 00:20 to 00:50 (8 April 2023, GMT + 8) 

at the Xinglong Observatory of the NAOC. f, Temporal correlation analysis of 
atmospheric turbulence. A sliding window of 20 frames was used to calculate 
mean correlations over a continuous acquisition of 1,000 frames. The box plots 
show the median, 25% and 75% quartiles and the maximum and minimum values. 
The filled grey triangles show the outliers. n = 373 denotes the number of distinct 
sub-FOVs, each of which covers 36 × 36 arcsec. P values are specified in the figure 
for 0.0001 < P < 0.05. *P < 0.05 (P = 0.0212), ****P < 0.0001; NS, not significant 
(P = 0.6660); right-tailed test. g, Cross-correlation maps of wavefront slopes with 
different sub-FOV (view direction) pairs. The angular separation between each 
pair is δθ. h, Examples of the one-dimensional curves along the orange dotted 
lines in g plotted for different δθ values. Three recovered turbulence layers are 
highlighted by the orange stars. The shaded regions around the dashed lines 
(mean values) denote ±1s.d. Each dashed line denotes the mean value of n = 40 
measurements.
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by the WWS, we thus developed a residual convolutional long 
short-term memory (ConvLSTM) network (Fig. 4c and Methods) to 
achieve the precise prediction of atmospheric turbulence in advance 
(Supplementary Video 2), which can enable more accurate 
pre-compensation in free-space optical communications.

In our experiments, we selected five frames at 30 Hz as the input 
to predict the turbulence wavefront at the sixth frame (about 33 ms 

later). We used two kinds of metric to evaluate the prediction perfor-
mance, including the R2 and the RMSE of the residual wavefront. The 
latter metric is directly related to the seeing condition. We divided 
our time-lapse measurements with a total of 6,000 frames into a 
training set (the first 5,400 frames) and testing set (the following 
600 frames). Different from targeting a small isoplanatic field50, 
our approach enables prediction over a wide area that ranges from 
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51 to 356 arcsec (along the diagonal) using the wide-field measure-
ments up to 865 arcsec as the input. On the basis of the frozen-flow 
hypothesis, the turbulence distribution over a larger FOV provides 
more information for precise and stable predictions (Extended 
Data Fig. 9a,b). The wind speed plays a critical role in defining the 
maximum size of the FOV that can effectively contribute to the pre-
diction. Similarly, the number of input frames also influences the 
outcome. Our ablation study indicated that the accuracy of the 
predictions reaches a saturation point after the input of five frames 
(Extended Data Fig. 9c,d). When predicting a single sub-FOV cover-
ing 51 arcsec, the WWS improved the mean value of R2 from 0.45 to 
0.86, exhibiting a better performance with reduced variance than 
traditional wavefront sensors (Fig. 4d). Correspondingly, the RMSE of 

the residual wavefront was reduced by 195 nm with the central wave-
length at 525 nm (Fig. 4e). A typical example is shown in Fig. 4f with an 
improvement of the signal intensity after pre-compensation, which 
is hard to be obtained using traditional methods. We further evalu-
ated the generalization capability of our network. By fine-tuning 
the network with a modest dataset from another day (540 frames), 
we can attain a comparable performance (Fig. 4g,h). Moreover, by 
training and testing the network with different temporal sampling 
rates, we found that a higher frame rate can increase the prediction 
accuracy further (Extended Data Fig. 9e,f). The experimental results 
demonstrate the potential of atmospheric turbulence prediction 
using wide-field observations and deep learning, which facilitates 
turbulence correction in broad applications.
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Fig. 4 | Wide-field atmospheric turbulence prediction under 33-ms delay. 
a, In free-space optical communication, the time discrepancy δt between the 
downlink (wavefront sensing) and uplink (wavefront pre-compensation) will 
introduce errors due to the rapid spatiotemporal evolution of atmospheric 
turbulence. b, Conceptual diagram of the atmospheric turbulence prediction. 
The distribution of atmospheric turbulence at the sixth frame is predicted 
based on the distribution from the first frame to the fifth. c, Architecture 
of our developed residual ConvLSTM network. CL, convolutional LSTM; 
conv, convolution. (For parameter definitions, see ‘Atmospheric turbulence 
prediction’ in the Methods.) d, The coefficient of determination (R2) is used 
to evaluate the prediction performance. The horizontal axis represents the 
predicted FOV. ‘Traditional’ refers to prediction methods using a conventional 
wavefront sensor, of which the input and predicted region are of the same sub-
FOV (51 arcsec along the diagonal). The WWS used wide-field measurements 
across 856 arcsec to predict turbulence wavefronts across different FOVs.  

The mean value is improved from 0.45 to 0.86. ‘Finetune’ is used to demonstrate the 
generalization capability by fine-tuning the network with a modest dataset from 
another day (540 frames at 30 Hz). e, The RMSE is used as an evaluation metric 
for the prediction performance (centre wavelength at 525 nm). The mean value 
of the RMSE is reduced from 224.10 nm to 109.84 nm using the WWS. In d and e, 
the P values specified for a left-tailed test (d) and right-tailed test (e), and data are 
represented as the mean ± s.d. (n is the number of predicted sub-FOVs covering 
51 arcsec along the diagonal, n51 = 570, n153 = 5,130, n255 = 14,250, n356 = 27,930,  
n356 (finetune) = 2,205). f, A typical example with both accurate wavefront prediction 
and improvement of the signal intensity after pre-compensation. The intensity 
is normalized by the maximum value of the ideal point spread function under 
no turbulence conditions. g,h, Visualization results of atmospheric turbulence 
prediction across 356 arcsec on a chosen day (g) and then on another day (h). 
Scale bars, 36 arcsec.

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-024-01466-3

Discussion
In this work, we introduced the WWS to directly observe wide-field 
atmospheric turbulence. The WWS is a cost-effective plug-and-play 
solution that can be easily adapted to most existing systems for quan-
titative wide-field wavefront sensing without additional modification. 
This flexibility liberates turbulence studies from the constraints of 
complicated optical configurations. Moreover, the scope of the tur-
bulence observation using the WWS can be extended from the atmos-
phere to the ground surface (Extended Data Fig. 10a,b). In addition 
to using an extended source such as the moon, point sources such 
as sparse stars can also serve as targets for turbulence observation 
(Extended Data Fig. 10c–f). However, the long exposure time required 
will blur the light-field measurements of the WWS (30 Hz) due to the 
dynamic turbulence, whereas traditional adaptive optics can facilitate 
long-exposure imaging with real-time feedback of up to kilohertz. 
Future advancements in computational resources and high-speed 
cameras may address this problem. We anticipate that the wide-field 
observation capabilities of the WWS will unlock new possibilities in 
studying the evolution of atmospheric turbulence and support diverse 
practical applications.
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Methods
Experimental set-up and data process
The hardware instrument of our WWS primarily consists of a CMOS with 
an MLA attached on top. For our prototype, we used a Flare 48M30-CX 
camera (IO Industries) with a resolution of 7,920 × 6,004 pixels to 
enable wide-field observation. The sensor used was a CMOSIS 50000 
with a pixel size of 4.6 μm and a peak wavelength of quantum efficiency 
at 525 nm. Each microlens has a diameter of 69 μm, covering a region 
of 15 × 15 pixels. A higher spatial sampling rate of the pupil plane was 
achieved by covering more pixels with a single microlens. The MLA 
used has an F-number of 10 and a focal length of 690 μm, tailored to 
match the telescope specifications. It should be noted that all experi-
ments were conducted using the 80 cm Tsinghua-NAOC telescope at 
the Xinglong Observatory of the NAOC. The CMOS photosensitive area 
was positioned at the back focal plane of the MLA, and the relative rota-
tion, pitch and yaw between the two components were adjusted using 
a compact five-axis stage (PY005, Thorlabs). During the experiments, 
the prototype was place directly at the image plane of the telescope. 
The exposure time, shooting time and acquisition frame rate for all 
of the observation measurements in this paper are provided in Sup-
plementary Table 1. The 1st–35th Zernike coefficients for atmospheric 
turbulence were estimated, following the conventions according to 
Noll40. As turbulence is a zero-mean random process, we obtained the 
system aberration by calculating the mean value over a period along 
each FOV. In turbulence correction (Fig. 2d,e,g), the 1st–35th Zernike 
modes were utilized, retaining the system aberration. For atmospheric 
turbulence prediction (Fig. 4), the 4th–35th Zernike modes were used, 
excluding the system aberration component.

Coarse-to-fine slope-estimation algorithm
According to the principle of the WWS, the impact of atmospheric 
turbulence on imaging can be interpreted as distorted subaperture 
images through the MLA. In the presence of isoplanatic aberration 
Φ0(fx), there will be a translational difference between subaperture 
images, which can be expressed as follows:

‖
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where ||Hu(x)||2 is the uth subaperture image, Φ0
u ( fx − f ux ) corresponds 

to the aberrated phase Φ0(fx) at the subregion Pu of the pupil plane, fx 
represents the coordinates in the pupil plane; f ux  denotes the centre of 
Pu; x is defined in the image plane, representing a unique FOV direction 
(Fig. 1c); Δs0u denotes the relative displacement of Hu caused by Φ0(fx), 
which is also proportional to the overall phase gradient51 of Φ0(fx) at 
fx = f ux . Therefore, the isoplanatic aberration Φ0(fx) will introduce a 

uniform lateral shift Δs0u  for ||Hu(x)||2 (Fig. 1d). However, under aniso-
planatic aberrations Φ(x,fx), each local region of ||Hu(x)||2 has its own 
lateral shift, resulting in global image distortion Δsu(x) (Fig. 1a). In 
practice, we designate a reference subaperture and compute its slope 
map Δsu(x) with respect to other subaperture images (Fig. 1e).

To achieve subpixel-precision slope maps, we propose a 
coarse-to-fine slope-estimation algorithm based on the PyTorch frame-
work52. This algorithm aims to estimate the spatially non-uniform lateral 
shifts between distorted image pairs, denoted as I0 and It, specifically 
caused by anisoplanatic turbulence. As the subaperture images rea-
ligned from the light-field image exhibit varying background intensity 

distributions, which is detrimental to slope estimation, we normalize 
I0 and It using intensity maps M0 and Mt to achieve a de-intensified 
version with amplified features, denoted as U0 and Ut. Here, M0 and Mt 
are obtained by applying a 0.05-fold adaptive average pooling and a 
20-fold bicubic interpolation, as illustrated in Extended Data Fig. 1b. 
The objective function is defined as below:

min
Δs(x′)

||||U0 (x) − Ut (x + Δs (x)) ||||
2

2
, Δs (x) = bicubic (Δs (x′)) , (2)

where U0 is the de-intensified referenced image and Δs(x) represents 
the pixel shifting from Ut to U0. The optimization is divided into two 
parts: first, we estimate the global translation (coarse slope map); then 
we optimize the local lateral shifts (fine slope map). This design signifi-
cantly improves the accuracy of the algorithm and reduces the num-
ber of iterations. It is important to note that the turbulence-induced 
distortion is globally smooth and continuous. This enables us to opti-
mize a sparse slope map Δs(x′), determined by the number of control 
points, to represent the dense distribution of atmospheric turbulence 
(Extended Data Fig. 1b). We then upsample Δs(x′) to Δs(x) using bicubic 
interpolation and Ut(x) is warped to Ut(x + Δs(x)). The mean squared 
error loss between Ut(x + Δs(x)) and U0(x) is computed within the 95% 
central region to avoid boundary issues. The estimation of the global 
translation takes approximately 20 epochs with a learning rate of 0.01, 
followed by refinement of the local lateral shifts with at least ten epochs 
and a learning rate of 0.001. An MLP network is used for projecting the 
slope map to the Zernike polynomials. The MLP uses ReLU as activa-
tion function and comprises two hidden layers, with 300 nodes in the 
first and 500 nodes in the second53. The computational time of slope 
estimation followed by MLP projection for each frame is tested using 
eight NVIDIA GeForce RTX 4090 graphics cards in Fig. 2c.

Numerical simulation of the WWS
To assess the accuracy of the algorithm in aberration estimation, we 
performed simulations by incorporating a globally non-uniform dis-
tribution of aberrations (7 × 10) into subaperture images with a FOV 
spanning 541 arcsec (Fig. 2a,b). The aberrations covered the 4th–35th 
modes of the Zernike polynomials, with different RMS values. Each 
microlens covers 225 (15 × 15) pixels, with each pixel correspond-
ing to 0.12 arcsecond as in an 80 cm telescope, and the F-number of 
the microlens was 10, matching the system parameters. WWS (1 × 1) 
illustrates the situation as the snapshot light-field imaging where 
the presence of the microlens leads to a spatial sampling loss for 
each subaperture image (Fig. 2a). WWS 5 × 5 and 15 × 15 correspond 
to different scanning times, equivalent to an increase in subaperture 
spatial sampling compared with 1 × 1. The 15 × 15 resolution means that 
each subaperture image has the same pixel numbers as the original 
light-field image. This enhancement can be achieved through a piezo 
stage in a meta-imaging sensor or the TIS method integrated within our 
WWS. The experimental results demonstrate that our method main-
tains high accuracy in wavefront estimation, even on low-resolution 
subaperture images, showcasing its subpixel-precision capabilities. 
Furthermore, we introduced Gaussian noise directly into the sub-
aperture images to demonstrate the noise robustness of the WWS 
(Extended Data Fig. 4). In our simulations (Fig. 2b), the configuration 
of the C-SHWS is adapted from the specifications of the Thorlabs 
WFS20-70AR wavefront sensor. There are 15 × 15 subapertures with 
15 × 15 pixels for each subaperture. The pixel size is equivalent to 
0.8 arcsec and the centre wavelength is set at 525 nm.

Atmospheric turbulence simulation
The atmospheric turbulence simulations were based fully on the  
von Kármán turbulence model37 and Taylor’s frozen-flow hypothesis, 
where the 3D volume of atmospheric turbulence is simplified as a 
compilation of vertically discrete phase-screen layers. Every turbulent 
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layer is locally homogeneous and isotropic, without any interaction 
between other layers. The von Kármán phase structure function38, 
Dφ(r), is given by

Dφ (r) = k1(
r0
L0

)
− 5

3
× [k2 − (2πr

L0
)

5
6
K 5

6
(2πr
L0

)] , (3)

where k1 ≈ 0.172 and k2 ≈ 1.006 are constants, r0 is the Fried parameter, 
L0 is the outer scale and K 5

6
(⋅) is the modified Bessel function of the 

second kind. In our simulations, the global r0 is set to 3.6 cm at 525 nm 
wavelength and 0° zenith angle, and the number of layers is set to four. 
The actual global r0 estimation during observation is carried out using 
a DIMM14,54,55 at the same observatory15. It is worth noting that different 
definitions of L0 may lead to controversial values, typically ranging 
from a few metres to more than 2 km (refs. 42,56). We hereby follow 
the definition14,37,42,57, and use L0 = 10 m in all simulations. Owing to the 
ongoing debate about the outer scale, we also conducted simulations 
for cases where L0 is set to distinct values (Extended Data Fig. 8). The 
results demonstrate that the setting of the L0 value does not have a 
significant impact. Consequently, the phase structure function Dφ(r) 
can be defined as follows:

Dφ (r) ≜ ⟨(φ (x) − φ (x + r)) (φ (x) − φ (x + r))T⟩

= 2 [⟨φ (0)φ (0)T⟩ − ⟨φ (r)φ (0)T⟩] ,
, (4)

where φ(x) is the wavefront phase at point x, ⟨⋅⟩ denotes the ensembled 
average, ⟨φ (0)φ (0)T⟩ is the spatial covariance of wavefront phase at 
x = 0. Now we consider the Zernike representation of the von Kármán 
atmospheric turbulence model. Following the definition from Noll40, 
the Zernike polynomial expansion of an arbitrary phase is given by the 
following matrix–vector multiplication:

φ = Za or a = Xφ, (5)

where φ is the vectorized phase, a =
⎛
⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟
⎠

 is a vector of Zernike coef-

ficients up to the nth mode, Z = [z1, z2,… zn] is a concatenation of Zernike 
phase vectors, X is the pseudo-inverse of Z, as Z is not necessarily 
square. Finally, the spatial covariance matrix of Zernike coefficients 
(Fig. 3d) can be acquired from:

⟨aaT⟩ = ⟨XφφTXT⟩ = X ⟨φφT⟩XT, (6)

where (⋅)T denotes the transpose.

Atmospheric turbulence profiling with SLODAR
The knowledge of the statistical properties of atmospheric turbu-
lence, for example, the Fried parameter23 (r0), the vertical profile of 
turbulence strength58 (Cn

2) and the temporal evolution of atmospheric 
turbulence36, is fundamental in a variety of ground-based observational 
applications5,59–61. First proposed in 2002, SLODAR48 is an atmospheric 
turbulence profiling method based on optical triangulation, and has 
been widely used at many astronomical observatories46,47,62,63. It esti-
mates the time-averaged cross-correlation of the wavefront slopes 
measured from two (or a few) target FOVs that are relatively close to 
each other:

C (δi,δj) = ⟨
∑ijsij (t) s

′
(i+δi, j+δj) (t)

O (δi,δj)
⟩ . (7)

The cross-correlation of the measured slopes was accumulated. 
For this, sij(t) is the wavefront slope in subaperture (i,j) at time t  

and s′(i, j) (t)  is the slope for the corresponding subaperture of the sec-

ond FOV. The angle brackets denote averaging over many independent 
frames, and typically 1,000 frames over 30 s are required; O(δi,δj) is 
the total number of overlapped subapertures for separation (δi,δj). 
The cross-correlations of all possible (δi,δj) form a 2D correlation map. 
A turbulent layer located at a given altitude will appear as a peak on the 
correlation map along a specific direction. The altitude is determined 
by the angular separation δθ and the position of the peak in the 
cross-correlation between FOV pairs. The altitude resolution (δh) and 
the maximum altitude recovered by a SLODAR system (Hmax) are  
given by:

δh = w
δθ ⋅ sec ζ

, Hmax = N ⋅ δh. (8)

In our experiments, w = 0.8/15 ≈ 0.053 m represents the subaper-
ture size, ζ = 31.65° denotes the zenith angle and N = 15 is the number of 
subapertures along the diameter of the telescope pupil64. The results 
corresponding to the same angular separation were averaged for more 
reliable turbulence profiling, reducing the impact of device noise or 
turbulence stochasticity. In addition, the available angular baselines 
of WWS measurements can range from 36 to a few hundred arcsec-
onds, facilitating an extremely high-altitude resolution of 43 m. Three 
turbulent layers are clearly seen in the correlation maps, and good 
agreements are found between different baselines, as shown in Fig. 3h.

Turbulence-induced scanning
TIS is a method for increasing the spatial sampling rate of subaperture 
images within the WWS. In principle, the dynamic atmospheric turbu-
lence will introduce continuous distortions for each subaperture image 
(Fig. 1d). The global image distortion can be treated as many local lateral 
shifts within each sub-FOV. The lateral shifts can be seen as a form of 
dense spatial sampling (Extended Data Fig. 7c), termed TIS. Unlike 
previous methods that use a piezo stage to achieve uniform dense 
sampling, TIS is characterized by non-uniform and irregular  
sampling. The specific procedure is as follows. First, the temporal 
light-field data are realigned into different subaperture images 
{Hu,tn (x) |u = 1, 2,… , 225; n = 1, 2,… ,9} , where n denotes the number of 
imaging frames. Taking one subaperture image, H1,tn (x), as an example, 
the sampling points of H1,tn  are uniformly and sparsely distributed 
(Extended Data Fig. 7d). Using the slope-estimation algorithm, we 
estimated the flow maps Δs1,tn (x)  between the reference frame H1,t5 (x) 
and the other frames H1,tn (x). Subsequently, the spatial coordinates of 
sparsely sampled points at different frames can be obtained:

{x + Δs1,tn (x)} = {x + flowestimate (H1,t5 (x) ,H1,tn (x))} , n = 1, 2,… ,9. (9)

Furthermore, we merged the nine frames {H1,tn (x) |n = 1, 2,… ,9}  
along with sparse sampling pixels into a single frame with non-uniform 

densely sampled pixels ⋃n=9
n=1 H1,tn (x) (Extended Data Fig. 7c). Using their 

relative spatial coordinates ⋃n=9
n=1 x + Δs1,tn (x), we can obtain a uniform 

dense-sampled image (Extended Data Fig. 7d):

H′
1,t5

= SI(
n=9

⋃
n=1

(H1,tn (x)) ,
n=9

⋃
n=1

(x + Δs1,tn (x))) . (10)

Here, SI represents the scatter interpolation. TIS can be applied 
to all of the subaperture images {H′

u,t5 (x) |u = 1, 2,… , 225}  for high- 
resolution imaging through the atmospheric turbulence instead of the 
additional hardware scanning methods31.

Atmospheric turbulence prediction
We developed a residual ConvLSTM network to accomplish the atmos-
pheric turbulence prediction. The LSTM can leverage the temporal 
information of the measurements, and the convolution can make full 
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use of the spatial information65. The network architecture is shown in 
Fig. 4c. The first block is a two-layer ConvLSTM with kernel size of five 
and the number of hidden-layer channels is 128; the second block is a 
five-layer ConvLSTM with kernel size of three and the number of 
hidden-layer channels is 32. A residual structure was induced between 
the two blocks to improve the prediction performance. A fully con-
nected layer is placed at the end of the network to adjust the output 
dimension. At each frame, the input wavefront phase is characterized 
as a tensor of size (c,h,w), where h,w, represents the FOV in measure-
ments and c represents the coefficients of Zernike polynomials. We 
divide our time-lapse wide-field measurements (a total of 6,000 frames 
captured at 30 Hz) into a training set (the first 5,400 frames) and a 
testing set (the remaining 600 frames). In the ‘finetune’ experiments, 
a separate set of 600 frames captured on another day was used  
for training and testing. To account for the variations in the scales of 
input Zernike coefficients across different modes, a separate pre- 
normalization was performed on each channel before they were 
injected into the network. The pre-normalization ensures that the 
model does not focus solely on low-order modes with larger absolute 
values but also effectively fits the high-order modes. By addressing 
this issue, the network achieves a more balanced and accurate repre-
sentation of the input measurements. The mean absolute error is 
adopted as the loss function. The input frames are from [t − L, t − 1], 
where L represents the number of input frames for atmospheric tur-
bulence prediction, and we computed the loss on the output frames 
[t − L + 1, t], which has been experimentally shown to help the model to 
converge faster. The parameter L is set according to the ablation study 
in Extended Data Fig. 9c,d. The objective function is defined as follows: 
ℒ = ||P[t−L+1,t] − ̂P[t−L+1,t]||1,  where P is the ground truth and ̂P  is the  
predictive result of the network. The model was trained and tested 
using an Intel i9-10900X central processing unit, with 64 GB 
random-access memory and an NVIDIA GeForce RTX 3090 graphical 
processing unit.

Data availability
Demo data and pretrained model weights are publicly available via 
Zenodo at https://doi.org/10.5281/zenodo.11063855 (ref. 66). Owing 
to the large size of the raw data, a subset of the raw WWS data is avail-
able via Zenodo at https://doi.org/10.5281/zenodo.11063896 (ref. 67) 
and https://doi.org/10.5281/zenodo.11071397 (ref. 68). Datasets (Sup-
plementary Table 1) are available from L.F. upon reasonable request. 
Source data are provided with this paper.

Code availability
Codes for the whole pipeline of the WWS are available via GitHub at 
https://github.com/freemercury/Widefield_wavefront_sensor.git.
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Extended Data Fig. 1 | Flowchart of the wavefront sensing pipeline and 
analysis of computational speed for the wide-field wavefront sensor.  
a, Flow chart of pixel realignment. Resize and rotation of the raw measurements 
are employed to correct minor assembly errors between the complementary 
metal-oxide semiconductor (CMOS) and the micro-lens array. The “doughnut” 

appearance of microlens in the light-field image is caused by the obstruction 
of the secondary mirror. b, Pipeline of the coarse-to-fine slope-map estimation 
algorithm. c, Analysis of computational time for different numbers of control 
points inside the same field of view (FOV) with 1,100 arcseconds along the 
diagonal.
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Extended Data Fig. 2 | Comparisons between plenoptic wavefront sensor and 
wide-field wavefront sensor. a, The network architecture of learning-based 
plenoptic wavefront sensing24 used for comparison. b, The multilayer perceptron 
for our wide-field wavefront sensor. c, Box plots of residual wavefront errors 
(root mean square error, RMSE) obtained by plenoptic wavefront sensor and 

wide-field wavefront sensor. The aberrations are generated randomly with a 
maximum Zernike mode of 35 (Noll) and the average aberration level (root mean 
square, RMS) is 1.5λ. We tested n = 1000 different aberrations for comparison.  
d, The average time cost for both methods. Box plots (c) show the median, 25% 
and 75% quartiles, maximum and minimum values, and the outliers.

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-024-01466-3

Extended Data Fig. 3 | Numerical evaluations of microlens pitch sizes on 
wavefront sensing performance. a, Curves of residual wavefront errors (for 
isoplanatic aberrations) σ versus different pitch sizes of microlens in terms of 
different Zernike modes involved. The sensor pixel size is fixed as 4.6 μm and the 
microlens pitch size corresponds to different sub-aperture numbers. σ is 
calculated by the ratio of the residual phase RMS to the peak-to-valley value of the 
added aberration. The FOV of each image is 100×100 square arcseconds. The 
aberration RMS is 1λ. b, Curves of residual wavefront errors (for isoplanatic 
aberrations) σ versus different microlens pitch sizes in terms of different 

aberration levels with a maximum Zernike mode of 35. Data in (a-b) are 
represented by mean ± s.d. and the number of isoplanatic aberrations n = 50.  
c, One simulated sub-aperture images obtained by the wide-field wavefront 
sensor with 7×10 spatially variant aberrations applied in a FOV across 541 
arcseconds with a sensor pixel size of 0.12 arcsecond based on an 80-cm 
telescope. The aberrations are generated randomly with a maximum Zernike 
mode of 35 (in the order of Noll) and the average aberration RMS is 1 λ.  
d, Simulated ground truth aberrations across the whole FOV. e, Estimated 
aberrations by wide-field wavefront sensor.
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Extended Data Fig. 4 | Numerical evaluations of the noise robustness for 
wide-field wavefront sensor. a-b, One of the simulated sub-aperture images of 
wide-field wavefront sensor with 7×10 spatially variant aberrations with different 
signal-to-noise ratios (SNRs) by directly adding Gaussian noise to sub-aperture 
images. The aberrations are generated randomly with a maximum Zernike mode 

of 35 (Noll) and the average aberration level (RMS) is 1 λ. c, Box plots of the 
relative residual wavefront errors σ versus different SNRs. Box plots (c) show the 
median, 25 and 75% quartiles and maximum and minimum values. The number of 
spatially variant aberrations n = 70.
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Extended Data Fig. 5 | Schematic simulation pipeline of the correlating 
Shack-Hartmann wavefront sensor. a, The simulation pipeline of correlating 
Shack-Hartmann wavefront sensor (C-SHWFS) with an extended object. First, 
we simulate the sub-aperture images of a point-source SHWFS. Then, the 
sub-aperture images of C-SHWFS can be obtained by two-dimensional (2D) 

convolution between the sub-aperture images of SHWFS and isoplanatic patches 
of the extended object, whose dimensions are determined by the actual FOV of 
the wavefront sensor. Wavefront slopes of C-SHWFS are estimated by 2D cross-
correlation among the corresponding sub-aperture images and the wavefront is 
acquired by projecting the slopes to Zernike polynomials.
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Extended Data Fig. 6 | Comparison of turbulence-corrected imaging 
methods between meta-imaging sensor and wide-field wavefront sensor.  
a, Meta-imaging sensor requires lateral scanning through a piezo stage to 
increase the spatial sampling rate of sub-aperture images, which consequently 
improves the precision of aberration estimation. The densely sampled sub-
aperture images are divided into blocks and local turbulence wavefronts are 
iteratively optimized. High-resolution (HR) images are then reconstructed block 

by block based on a simulated ideal point spread function (PSF).  
b, Wide-field wavefront sensor achieves densely sampled sub-aperture images 
utilizing the turbulence-induced scanning (TIS) method, without the need for 
additional scanning hardware. Moreover, the global atmospheric turbulence 
wavefront can be obtained in real time. By incorporating the global turbulence 
wavefronts, high-speed aberration-corrected imaging across a wide FOV with low 
computational costs can be achieved.
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Extended Data Fig. 7 | Principle of turbulence-induced scanning. a, The 
schematic diagram of TIS for each sub-aperture image. Due to the inherent 
spatial sampling loss in the snapshot light-field measurements, each sub-
aperture image can be regarded as a uniform sparse sampling. The temporal 
evolution of atmospheric turbulence induces multiple sampling positions for 
the same target at different frames. We merge the uniform sparse sampling 
information of all frames into a single sub-aperture image with non-uniform 

dense sampling. Then, through the scattered interpolation method, a uniform 
dense sampling sub-aperture image can be obtained. b, Single sub-aperture 
images with sparse sampling. Under short exposure, the resolution of each  
sub-aperture is mainly limited by insufficient sampling rather than blurring 
caused by turbulence. c, Single sub-aperture images with non-uniform dense 
sampling. The non-uniformity leads to severe artefacts. d, Single sub-aperture 
images after TIS. e, Traditional 2D imaging results.
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Extended Data Fig. 8 | Normalized covariance matrix of different Zernike 
modes for the von Kármán turbulence model with different outer scales.  
a-d, Normalized covariance Matrix for 4th - 35th Zernike modes of the simulated 
atmospheric turbulence based on the von Kármán turbulence model. It can be 

observed that when the outer scale L0 is changed, there are no significant 
changes in the statistical patterns. e, A slight difference occurs when L0  
equals to 50 meters.
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Extended Data Fig. 9 | Ablation analysis of input measurements parameters 
in atmospheric turbulence prediction. a, R2 (coefficient of determination) 
of atmospheric turbulence prediction across 51 arcseconds with different 
input FOV. b, RMSE of atmospheric turbulence prediction across 51 arcseconds 
with different input FOV. Data are mean ± s.d. and n is the number of predicted 
isoplanatic regions covering 51 arcseconds in (a-f), where n = 570 in (a-b). c, R2 
of atmospheric turbulence prediction of 51 arcseconds with various lengths 

of input frames. The input FOV is 865 arcseconds. d, RMSE of atmospheric 
turbulence prediction of 51 arcseconds with various lengths of input frames. 
The input FOV is 865 arcseconds. n1 = 594, n3 = 582, n5 = 570, n7 = 558, n9 = 546 in 
(c-d). e, R2 of atmospheric turbulence prediction of 51 arcseconds with different 
frame rate. f, RMSE of atmospheric turbulence prediction of 51 arcseconds with 
different frame rate. n7.5 = 480, n10 = 510, n15 = 540, n30 = 570 in (e-f).
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Extended Data Fig. 10 | Applicability of WWS for diverse scenarios. a, The 
center view of long-distance (about 2 km) daytime imaging with a wide-field 
wavefront sensor at 25 Hz. b, The aberration maps of ground-surface turbulence 
observed in a at different time points, showing the frozen-flow phenomenon.  
c, The center view of wide-field wavefront sensor with the simulated point 
sources as targets under anisoplanatic atmospheric turbulence. The RMS  
of added aberration is 0.5λ, consisting of 4th to 35th Zernike modes.  

The coarse-to-fine slope estimation algorithm is replaced by centroid extraction 
with pre-connected-component segmentation in this case. d, The ground 
truth of the turbulence-induced aberrations added to the point sources. e, The 
reconstructed aberrations by wide-field wavefront sensor. f, Box plots of the 
relative residual wavefront errors σ obtained by wide-field wavefront sensor  
and Shack-Hartmann wavefront sensor. Here, we show the median, 25% and  
75% quartiles, maximum and minimum values, and all the data points (n = 25).
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