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Absorption spectrum of doped highly mismatched alloys
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Highly mismatched alloys are a class of semiconductor alloys with large electronegativity differences between
the alloying elements. We predict that the absorption spectrum due to transitions between the split bands of a
doped highly mismatched alloy with a conduction band anticrossing shows qualitative features revealing the
fractional distribution of states in the split bands and providing valuable insight into their electronic structure. Our
prediction is based on the analysis of the joint densities of states for both direct and indirect transitions between
the split bands. In particular, we predict a peak near the absorption edge, which arises due to the suppression
of direct transitions at large momenta. As a result of the suppression of direct transitions, indirect transitions
dominate the spectrum away from the edge of absorption. We present analytic forms of the near-absorption-edge
and large-energy behaviors of the spectra, comparing them with the asymptotic forms of absorption from a single
deep impurity level.
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I. INTRODUCTION

Semiconductor alloys where the electronegativity or size
of the alloying elements significantly differs are called highly
mismatched alloys (HMA’s). The hallmark of HMA’s, as in
the prototypical case of GaAsN, is a band gap that changes
with alloying in a way that cannot be explained with a simple
bowing parameter [1], a feature that found many applications
in making various optoelectronic devices [2,3]. According to
the band anticrossing (BAC) model, the large decrease in the
valence-to-conduction band gap with alloying is associated
with a second band gap that opens between two split bands
E− and E+. According to the BAC, these split bands represent
the hybridization of localized states from the alloying element
with the conduction band of the host semiconductor (see
Fig. 1) [4]. When the localized states hybridize with a single
conduction band (CB) of the host, the gap opens by splitting
the CB into two split bands, E− and E+. In such HMA’s
with a CB anticrossing, the splitting can generate a narrow
intermediate band E− in the original band gap of the host.
The presence of the narrow band makes HMA’s a candidate
for implementing intermediate band solar cells [5–12], which
have the potential to break the Shockley-Queisser limit on
solar cell efficiency [13].

An impurity-averaged Green’s function approach [14] can
be used to show that the two BAC bands share each k state
in the Brillouin zone. That is, while the E− and E+ bands
have a clear dispersion with k, they do not hold as many
electrons as a band in a crystalline semiconductor. We refer to
this phenomenon as the fractional state distribution in the split
bands. In a previous work, we showed that this fractional dis-
tribution can manifest itself in plasmonic properties of HMA’s
when doped [15], allowing for the possible realization of
low-frequency lossless plasmonics [16]. The Green’s function
approach continues to prove fruitful in studying the electronic
structure of HMA’s [17]. Here, we show that the fractional

distribution produces a divergence in the joint density of states
between the E− and E+ bands, which should be visible in the
absorption spectrum of doped HMA’s, adding to our growing
knowledge of these alloys [18]. There has been success in
doping HMA’s so the E− band is partially full at equilib-
rium [19], but the absorption spectra of doped HMA’s have not
been studied. Although the absorption spectrum between the
two split bands of an HMA is crucial for example in operation
of intermediate band solar cells, there is not much known
about it.

In this work, we predict the absorption spectra of doped
highly mismatched alloys with a conduction band anticross-
ing. We show that the fractional distribution of states in the
split bands of this entire class of material leads to asymptotic
behavior of the spectra near the absorption edge that are
different from the spectra from isolated impurities in semi-
conductors. We show that at higher energies the behavior of
the absorption spectrum is similar to that from a single deep
impurity level, but the differences near the absorption edge are
particularly dramatic when the localized states are inside the
CB. We argue that such spectra carry definitive signatures for
the fractional distribution of states in HMA’s.

In general, the band-to-band absorption spectrum of a
material, in the single-particle picture, is determined by the
joint density of states (jDOS) and the effective transition
matrix element M(E ). The jDOS is a measure of the num-
ber of pairs of occupied and unoccupied states separated
by energy E , and M(E ) is the average of the dipole tran-
sition matrix elements between those pairs of states. It is
well known that the variation of jDOS with energy is often
the dominant factor in determining the energy profile of the
spectrum [20–24] and even where the effects of M(E ) make
quantitative changes, they do not change the overall shape
of the absorption profile [25,26]. Especially in the case of
dilute alloys and disordered materials such as HMA’s, where
ab initio computation of the matrix element is costly, jDOS is
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FIG. 1. (a) Band anticrossing bands E± according to Eq. (1),
together with a schematic valence band Ev . (b) The corresponding
spectral weighting factors a± from Eq. (11), with defect energy
Ed = −0.2 eV and broadening � = 0. The weight for Ev is constant
1 (dotted blue). (c) Spectral density Ak(E ) for Ed = 0.2 eV and
� = 100 meV from Eq. (7). Note the logarithmic colorscale. For
reference, E± according to Eq. (1) are also plotted in (c). In both
cases V = 3 eV and x = 1%. The spectral density for Ev is an ideal
delta function, shown by excluding its location from the plot.

often used to explain the qualitative features of the absorption
profile [27–29].

By contrast, in transitions from a single deep impurity level
to a continuum, the localized wave function can be easily
approximated, and the matrix element shows a strong k de-
pendence, which results in the suppression of higher-energy
transitions above the absorption edge [30,31]. Since HMA’s
form when there are many such impurity states (though not
necessarily deep in the band gap), such impurities are a natural
point of comparison. In the HMA case, the wave functions,
and thus the matrix elements, in both E+ and E− bands are not
easily determined, but we show that the k-conserving jDOS
itself encodes the same suppression of absorption at higher
energies, which is attributed to matrix element effects in the
isolated-impurity case. The result is that at higher energies,
the HMA jDOS is similar to the absorption spectrum from
deep impurity levels. Near the absorption onset, however, the
fractional state density of the HMA’s when the localized states
are in the CB of the host gives them a diverging absorption
edge rather than the square-root onset in the impurity case.
We derive the jDOS directly from the Green’s function and
include the effects of partial state occupation due to finite

temperature by considering the equilibrium Fermi distribu-
tion. We present results at 300 K, but the predicted features
are qualitatively unchanged as long as the temperature is small
compared to the bandwidth of the E− band.

Throughout the paper we focus on the absorption due to the
transitions between the split bands and neglect the transitions
from the valence bands. In typical HMA’s, including the ones
considered in Sec. III, the energy range of transitions between
the split bands is smaller than the fundamental gap between
the valence bands and E−. Beyond the single-particle picture,
bonding between electron-hole pairs may result in excitonic
peaks also near the edge of absorption. Although our model
does not go beyond the single-particle picture, we comment in
Sec. III that the peak that we predict is easily distinguishable
from possible excitonic peaks by varying the doping level.

II. ABSORPTION SPECTRUM AND JOINT DENSITY
OF STATES

While the BAC model [4] is very successful in describ-
ing the energy levels in the band structure of HMA’s, it is
quiet about how the propagating states are distributed among
these energies. The BAC energy levels are reproduced by an
impurity-averaged Green’s function in the coherent potential
approximation (CPA) introduced by Wu et al. [14]. The spec-
tral density derived from that Green’s function describes how
the hybridized propagating states of HMA’s are distributed at
each k. Here we show how the fractional state distribution
leads to qualitative features in the absorption spectrum of
doped HMA’s.

A. HMA’s distribution of states and the absorptivity

According to the BAC model [4], large differences in the
electronegativities of the mismatched elements compared to
the host leads to the formation of localized states with en-
ergy Ed . These localized states hybridize with the propagating
states of the unalloyed host, which have dispersion Ek, result-
ing in the emergence of two new split bands with dispersions

E± = 1
2 (Ek + Ed ±

√
(Ek − Ed )2 + 4V 2x), (1)

where V is the coupling energy between the localized and the
propagating states, and x is the alloy fraction of the mismatch-
ing element (see Fig. 1).

Although Eq. (1) is a great approximation for the energy
dispersion of E±, the split bands of HMA’s are not just two
regular bands arising from a periodic potential of a crystal.
They are both offspring of the hybridization of a single band
with a series of randomly distributed localized states. If we
assume that the alloying elements are uniformly distributed,
as in the coherent potential approximation [32], we may still
use the crystal momentum k as a good quantum number in
an ensemble-average sense. The exact hybridized eigenstates
with energy E have a nonzero projection on each k state. As
a result, at each k, there is a distribution Ak(E ), known as the
spectral density, that describes the projection of all hybridized
states with energy E on the k states. As we show in Sec. II B,
the spectral density Ak(E ) can be broken into two branches,
A±

k (E ), corresponding to E±.
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Now consider a doped HMA where some excess electrons
are occupying the E± bands. Under illumination with radia-
tion of frequency ω, suppose we want to calculate transition
rates of electrons from E−-energy states to E+-energy states.
Consider k-conserving direct transitions, which are normally
the strongest band-to-band transitions. To find the direct tran-
sition amplitudes, at each k we must know how many states
there are in each band. For example, the density of spin-up
electrons at k belonging to the E− band is

∫
dE A−

k (E ) fE ,
instead of the usual fE−(k), where fE = (e(E−μ)/T + 1)−1

is the Fermi distribution at temperature T and chemical
potential μ.

The usual discussion of absorptivity in semiconductors be-
gins from a Fermi’s golden rule analysis, generally called the
Kubo-Greenwood formula [20]. The absorptivity for photons
with energy E is controlled most importantly by the joint den-
sity of states (jDOS) at energy E , which describes the number
of pairs of states in the lower- and higher-energy bands that
are separated by energy E . Calculating the jDOS, we need
to take Ak into account, as it carries important information
about how the propagating states are distributed at each k.
For direct absorption processes, the relevant jDOS is Dj (E ),
which includes only pairs of states with the same momentum
k. For indirect absorption processes, the relevant jDOS is
ρ j (E ), which includes all pairs of states separated by energy
E , regardless of k. For both contributions to the optical ab-
sorption, there is a matrix element that must be averaged over
all contributing initial and final states. The result is that the
absorptivity due to direct processes αd ∝ |MD|2Dj (E )/E and
the absorptivity due to indirect processes αi ∝ |Mρ |2ρ j (E )/E ,
where MD and Mρ are the averaged matrix elements. In gen-
eral for band-to-band absorptions, the matrix elements MD

and Mρ also depend on E , but since many different transitions
contribute to the same energy, their E dependence is weak
and is not usually the dominant factor in determining the
general profile of α [20,21]. For an isolated deep impurity
level, the localized wave function has weak overlap with
high-k continuum states, giving a matrix element that de-
cays with increasing E [30,31]. The average Green’s function
approach includes this same overlap reduction in the jDOS
itself.

We consider both direct momentum-conserving transitions
between E− and E+ and indirect transitions that do not
conserve momentum. Indirect transitions are typically made
possible through phonon exchange, but in the case of an
alloy are also possible without phonons, due to the disorder.
Absorption and emission of phonons that make the indirect
transitions possible bring a small shift to the edge of the
optical absorption spectrum, which we neglect as it does not
affect the qualitative features we describe here. Therefore, we
can approximate the absorption profile as [20]

α(E ) ∝ Dj (E ) + vρ j (E )

E
, (2)

where v = |Mρ |2/|MD|2 is a volume scale of the system,
which we treat as a free parameter.

Calculating the jDOS’s for HMA’s must account for the
distribution of electrons at different energies according to
A±

k (E ), which is averaged over the alloy disorder. Assuming

that E− and E+ are statistically uncorrelated, we can write the
direct and indirect jDOS as

Dj (E ) = 1

V

∫
dE1dE2

∑
k

A−
k (E1)A+

k (E2) fE1

(
1 − fE2

)
× δ(E2 − E1 − E ), (3)

ρ j (E ) = 1

V2

∫
dE1dE2

∑
kk′

A−
k (E1)A+

k′ (E2) fE1

(
1 − fE2

)
× δ(E2 − E1 − E ), (4)

where V is the volume of the system. In Appendix A we
use supercell tight-binding models to show that correlation
effects appear to be small for the interband jDOS. Comparing
the dimension of Eqs. (3) and (4) also shows why the ratio
v = |Mρ |2/|MD|2 has the dimension of volume. Note that we
neglect the spin degree of freedom, unless otherwise men-
tioned, as it does not affect the shape of α(E ). The presence
of A±

k in the jDOS expressions produces the signatures of the
fractional state distribution of E± in the absorption spectrum
of a doped HMA.

B. HMA spectral density and resulting joint density of states

We now discuss how the distribution of states in HMA’s,
given by Ak(E ), generates qualitative features in α according
to Eq. (2). We begin by deriving Ak(E ). Based on Anderson’s
impurity model [33], Wu et al. built an average Green’s func-
tion for electrons in the conduction bands of an HMA [14]

G(E , k) =
[

E − Ek − V 2x

E − Ed + i�

]−1

, (5)

which successfully recovers the spectrum of the BAC model.
The new parameter � = πβV 2ρ0(Ed ) determines the broad-
ening of the Green’s function’s spectral density, where ρ0 is
the unperturbed density of propagating states in a unit cell
and has dimension of inverse energy. In what follows we con-
sider a generic case where Ek is a parabolic conduction band
and all energies are measured from its edge. Therefore, for
instance, � → 0 for Ed < 0, as ρ0 = 0 below the conduction
band edge.

While Eq. (5) and the BAC model contain the same energy
spectrum in the limit that � → 0, even in that limit the spec-
tral density Ak(E ) = −Im[G(E , k)]/π contains information
about what fraction of an electron can be in each of the states.
Since there is less than one alloying atom per unit cell of the
host crystal, the E− and E+ bands can not each hold as many
electrons as the original Ek band.

We can divide Ak(E ) into two pieces, corresponding to
E± as

Ak(E ) = A+
k (E ) + A−

k (E ) = 1

π

∑
s=±

Im

[
ãs

E − Ẽs

]
, (6)

where, including the effects of �, the dispersion of Eq. (1) is
generalized to

Ẽ± = 1
2 (Ek + Ẽd ±

√
(Ek − Ẽd )2 + 4V 2x), (7)

235207-3



HASSAN ALLAMI AND JACOB J. KRICH PHYSICAL REVIEW B 109, 235207 (2024)

TABLE I. Asymptotic behavior of the contribution of the direct
and indirect transitions to Eα(E ) in � → 0 limit at the absorption
edge and for large E , for the cases of negative and positive Ed ,
compared with the case of deep impurity [31]. ED is the edge of direct
transitions, and Eρ is the edge of indirect transitions.

Direct Indirect

Edge Large E Edge Large E

Ed > 0 HMA 1/
√

E − ED E−3/2 E − Eρ

√
E

Ed < 0 HMA
√

E − ED E−3/2 E − Eρ

√
E

Deep impurity
(allowed) [31]

√
E − ED E−3/2

√
E − Eρ

√
E

with Ẽd = Ed + i�, and the generalized weight factors are

ã± = ± V 2x

(Ẽ+ − Ẽ−)(Ẽ± − Ek )
. (8)

A realization of Ak(E ) with a finite � is shown in Fig. 1(c).
Note that most of the spectral weight is near the BAC bands,
but the weight spreads out to nearby energies, as well.

When � → 0, Eq. (7) reduces to Eq. (1) and the spectral
density reduces to two delta functions at E±:

lim
�→0

Ak(E ) = a+δ(E − E+) + a−δ(E − E−), (9)

with

a± = ± V 2x

(E+ − E−)(E± − Ek )
, (10)

which we derived previously to show how the state distribu-
tion in HMA’s affects their plasmonic properties [15]. The
weight factors a± in Eq. (11) are positive numbers smaller
than 1, representing the share of a single k state in each of E±.
A realization of a± is shown in Fig. 1(b) in a case with Ed < 0
where � → 0.

In the limit � → 0, we can find analytic forms for Eqs. (3)
and (4). These results are exact for the Ed < 0 case. While the
analytic forms are not exact when Ed > 0, the analytic results
from the � → 0 limit provide useful insight to the behavior of
Dj and ρ j with finite � as well. We derive these analytic forms
and their implications for finite � cases in Appendix B. Table I
summarizes the qualitative results, showing the scaling of Dj

and ρ j with energy near their respective energy onset and at
large energy.

We observe that similar to the case of a single deep im-
purity level [30,31], the direct E− to E+ optical transition is
suppressed at higher energy, showing the same E−3/2 behav-
ior. The E− states at high k have mostly localized character,
and as a result the spectral density a− is small, as is visible
in Fig. 1(b). Since there is little weight in these large-k states,
Dj (E ) is suppressed, producing a peak in the direct optical ab-
sorption spectrum. Further, away from the edge of absorption
ρ j ∼ √

E , as one would expect from transitions from a single
impurity state to a parabolic continuum.

However, the edge of absorption is different from the case
of absorption from isolated deep impurity levels. The case
where the localized states are in the CB of the host has no
analogy in the isolated-level context. In that case the edge of
direct absorption is dramatically different, with a divergence

at the absorption edge rather than a square-root onset. Near
k = 0 the set of localized states forms a flat band. When
Ed > 0 the flat band crosses the CB of the host, which leads
to E+ − E− acquiring a minimum at a finite k. In Appendix B
we show how this finite-k minimum leads to the divergence
of Dj at the edge of absorption, as shown in Table I. The
asymptotic behavior of indirect transitions at the absorption
edge is also different from the case of a single deep impurity
level, as we discuss in Appendix B and show in Table I. That
difference from square root to linear onset may be harder to
detect, especially in the case of Ed > 0, where the finite �

smears the absorption edge.
The finite � in the case of Ed > 0 turns the divergence

into a peak the width of which is controlled by �. Hence,
this peak also provides a practical way to estimate �, which
is otherwise a difficult quantity to measure. In the case of
Ed < 0 the peak’s width is controlled by |Ed |, as we show in
Appendix B. The presence of the peak in the direct optical
absorption is the most significant feature of the absorption
spectra, and according to Eq. (2) should be visible in plots
of Eα(E ), which is proportional to the jDOS according to
Eq. (2).

In Eq. (2), we do not know the ratio of indirect to direct
matrix elements v, but in general in semiconductors indirect
processes are weaker than direct ones, as they need to couple
phonons in to the system. However, since HMA’s are random
alloys and not crystalline semiconductors, it is possible that
momentum conservation between states holds less strongly
than in standard semiconductors, which would increase the
magnitude of the indirect matrix element compared to the
direct matrix element in the absorptivity, increasing the ρ j

contribution with respect to the Dj contribution. In any case,
our key results do not depend on the precise value of v, as
they are the consequence of qualitatively different behavior of
Dj and ρ j . Indirect processes are most important at energies
where the direct processes are suppressed, and we predict
that in the form of the E− to E+ absorption spectrum the
same pattern will hold. We predict that since Dj decays as
E−3/2 for large E , while ρ j grows as

√
E , then for large

enough v the indirect transitions will dominate the large-E
part of the E− to E+ absorption spectrum. Reference [9] on
the transient absorption spectrum of HMA’s invoked indirect
transitions to explain their observed high-energy absorption.
Here we provide a firm theoretical basis for indirect transitions
dominating direct transitions at higher energy. The indirect
absorption edge occurs at lower energy than the direct absorp-
tion edge, allowing indirect absorption also to dominate for
energies below the direct absorption edge. This effect is most
noticeable when Ed < 0 since the direct absorption spectrum
is broadened by � when Ed > 0.

All of these features are the direct consequence of the
fractional distribution of states in HMA’s, and detecting them
in experiments would be a good validation test for the theory.
Notice that, given the generality of Ek in Eq. (5), this theory
can easily extend to capture the effects of nonparabolicity as
well. To apply the theory to valence band HMA’s, where the
impurity levels cross multiple bands, an extended formulation
of the average Green’s function is needed. This extended ver-
sion should effectively capture the hybridization of impurity
levels with the multiple bands.
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TABLE II. Parameters of BAC model for Zn1−yCdyTe1−x

Ox [34,35], where me is the free-electron mass.

Parameters y = 0 y = 1

Ed (eV) −0.27 0.38
V (eV) 2.8 2.2
m (me) 0.117 0.09

III. EXPERIMENTAL SIGNATURES

We illustrate the predictions for the signatures of E−
to E+ optical absorption by considering HMA’s from the
ZnCdTeO family, where the BAC parameters have been esti-
mated [34,35]. Zn1−yCdyTe1−xOx is a II-VI quaternary HMA
in which ZnCdTe forms the standard semiconductor and oxy-
gen plays the role of mismatching element. It has been the
subject of extensive studies and used as an HMA of choice
in making devices [8,19,34,36–40]. We choose ZnCdTeO for
our case study because there have been successful attempts
in doping the E− band with chlorine donors [19]. Moreover,
controlling the Cd concentration allows for sweeping Ed .
BAC parameters for the ternary end-point alloys are given
in Table II, which shows that by increasing Cd fraction, Ed

moves from negative to positive. For all x, y, the fundamental
band gap between the valence bands and E− stays well above
1 eV [35], so the transitions from the valence bands do not
affect the absorption profile in the range of our concern. For
the sake of demonstration, Table II shows the results for the
two ternary end points ZnTeO and CdTeO, but tuning the
Cd fraction allows realization of any Ed between −0.27 and
0.38 eV, along with changes in V and m.

Even for two parabolic valence and conduction bands α(E )
shows a peak due to the factor of E in the denominator of
Eq. (2). Instead, we consider Eα which is proportional to the
jDOS and reveals the signature of the fractional distribution
of states in the split bands of HMA’s. While experimentally
we generally specify doping level n, the absorption depends
most directly on the chemical potential appearing in the Fermi
function fE . We relate them using

n = 2

V

∫
dE

∑
k

Ak(E ) fE , (11)

where the factor of 2 accounts for spin degeneracy. In Fig. 2
we plot Eα at T = 300 K for doped ZnTeO (top) and CdTeO
(bottom), according to Eq. (2), for two doping levels. For the
case with a lower doping level, we also show the contributions
of direct and indirect transitions to Eα separately (shaded
blue). We use v = 10 nm3, chosen strong enough so that ρ j

visibly dominates Dj away from the edge of absorption. To
calculate Dj and ρ j for CdTeO we used the full form in
Eqs. (3) and (4). For ZnTeO, since Ed < 0 and � → 0, we
use Eq. (B2) to compute Dj and Eq. (B3) to calculate ρ j .

The absorption peak from the direct transitions is clear for
both materials in Fig. 2. We can see that the CdTeO (Ed > 0)
peak is narrower than the one in ZnTeO (Ed < 0), which we
expect as the Ed > 0 cases have peak widths controlled by �

while the Ed < 0 have them controlled by |Ed |, as discussed

FIG. 2. E− to E+ optical absorption Eα at T = 300 K for ZnCd-
TeO alloys with two doping levels, n = 5 × 1018 cm−3 (solid blue)
and n = 1019 cm−3 (dashed gray). The separate contributions of di-
rect and indirect transitions also shown for the lower doping level
(shaded blue), according to Eq. (2), where v = 10 nm3 is used for all
cases. (Top) ZnTe1−xOx , with x = 1%, and BAC parameters listed in
Table II, for which � → 0. (Bottom) CdTe1−xOx , with x = 1%, BAC
parameters listed in Table II, and � = 10 meV for broadening.

in Appendix B. And since � ∝ √
Ed when Ed > 0, we expect

to see narrower peaks for cases with smaller |Ed |.
Figure 2 also demonstrates that the indirect transitions

dominate at large E in both material systems, due to the
decaying large-E tail of Dj . Also, the indirect transitions
become available at lower energy, as they are not limited by
conservation of momentum, but this effect is only visible for
the Ed < 0 case where � → 0 does not smear out the edge
of absorption. In this case, the different behavior of the edge
from the case of a single deep impurity can be confirmed.
Since � being zero in the Ed < 0 case gives sharper features
to α, we also expect the edge of Dj to be visible as a kink in
the absorption in these cases, as shown for ZnTeO.

To show the effects of increased filling of the E− band,
we include two doping levels in Fig. 2, n = 5 × 1018 cm−3

(solid blue) and n = 1019 cm−3 (dashed gray), for both ZnTeO
and CdTeO. It is clear that the mentioned features of Eα,
the peak and the dominance of indirect transitions at large E ,
are present at both doping levels. It is possible that excitonic
peaks, which generally occur at energies just below the jDOS
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onset [41], could be confused for the peak that we predict. The
evolution of the peak as a result of increasing doping also pro-
vides a way to distinguish it from a possible excitonic peak.
In a doped HMA, both screening from carriers in the E− band
and the disordered potential should suppress excitons [42], so
we expect the possible excitonic peak to diminish at higher
doping. As Fig. 2 shows, the peak that we expect to be visible
in Eα naturally grows stronger at higher doping, making it
distinguishable from an excitonic one.

It is worth noting that although according to Ref. [19]
achieving chlorine concentration up to and even higher than
1020 cm−3 is possible, it is not clear what portion of the
dopants are electrically active. Especially as our model with
weighted bands shows, E− has a relatively small maxi-
mum capacity for carrying excess electrons. For instance, for
ZnTe1−xOx and CdTe1−xOx with x = 1% used for plotting
Fig. 2, the maximum capacity of E− is about 5 × 1019 cm−3

and 6 × 1019 cm−3, respectively. Electrically active doping
above those levels will populate the E+ band, with changes
to the E− to E+ absorption spectrum, similar to the Moss-
Burstein shift [43,44].

In the ZnCdTeO system, the typical frequency range for E−
to E+ absorption is around 0.1–1 eV, or a wavelength of 1–
10 µm. These spectra can be observed with Fourier-transform
infrared (FTIR) or other techniques appropriate for these long
wavelengths. We look forward to seeing the results of such
experiments, to see if they confirm our theoretical predictions.
We believe experimental results for the absorption spectrum
of doped HMA’s will be instrumental in understanding their
interesting electronic structure better.
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APPENDIX A: CORRELATION IN THE JOINT DENSITY
OF STATES

In the main text, we calculate the joint densities of states
from the disorder-averaged single-particle densities of states.
This procedure neglects correlations between the energies in
the E± bands. In particular, allowing an overline to indicate
disorder averaging, Eqs. (3) and (4) use the uncorrelated av-
erage Ak(E1)Ak′ (E2) rather than the true physical quantity,
which has Ak(E1)Ak′ (E2). Here we use explicit calculations
of eigenenergies in a simple-cubic tight-binding (TB) model
with explicit impurities to show that correlations in the jDOS
do not appear to be significant, and we expect the analytic
calculations of the main text to provide good representations
of the true jDOS.

We use a simple-cubic TB model because the parabolic
model underlying the Green’s function in Eq. (5) is not
conducive to explicit calculation. This Green’s function origi-
nates in the coherent potential approximation (CPA) applied
to a parabolic-band model hybridizing with local disorder,
with k-independent coupling coefficient. To make explicit
calculations, we here use a simple-cubic TB model with
nearest-neighbor hopping, with randomly located impurity
sites that have onsite energies of −δ while host sites have

onsite energy δ. This model is fully determined by the half-
bandwidth D of the host band structure δ and the impurity
fraction x. We align these bands with the BAC bands, de-
termined by V , Ed , and x, by noting that the bottom of the
unperturbed host band is at δ − D, implying Ed = D − 2δ.

We calculate the one-particle DOS in this simple-cubic
model both using the CPA and by explicit diagonalization of
realizations with disorder, with the results compared to the
DOS produced by Green’s function of Eq. (5), which we refer
to as BAC DOS, in Fig. 3(a). The CPA calculations use the
Python package GFTOOL [45]. We consider CdTe1−xOx with
the BAC parameters of Table II, with x = 1%, and adjust D
until the DOS of the TB CPA model, suitably shifted and
scaled, aligns by eye with the BAC DOS, which occurs with
D = 2.95 eV and δ = (D − Ed )/2 = 1.285 eV. Using a± in
Eq. (10), one can derive an analytical expression for the BAC
DOS as

ρ±(E ) = 1

V
∑

k

a±δ(E − E±)

= 1

4π2

(
2m

h̄2

)3/2
{√

E − V 2x
E−Ed

for E in E±,

0 otherwise.
(A1)

By increasing the size of supercell, we observe that the
DOS of the supercell calculations in the E+ region approaches
that of the TB CPA. In the E− region the bandwidth of the
TB CPA and supercell calculations are in agreement, but in
supercell calculations the supercell DOS shows a sharp spike
in the middle of E− that persists as the supercell size grows. It
appears that the CPA does not capture this feature. The BAC
DOS is not expected to agree quantitatively, as it is from a
different model, but it is clear that the chosen parameters give
good agreement between the BAC model and the energetic
positions of the E± bands.

We use the supercell spectra to investigate correlation in
jDOS. When formulating Eqs. (3) and (4), we assumed that
one can first average over an ensemble of realizations to find
the DOS of the system before calculating the jDOS as a
convolution of the DOS with itself. However, if there exists
correlation within the system, this jDOS would differ from
the jDOS obtained by convolving the DOS of each disorder
realization prior to averaging over all realizations. We express
these two distinct procedures for the more straightforward
case of indirect jDOS as

ρ j (E ) =
∫

ρ(E1)ρ(E1 + E ) fE1 (1 − fE1+E )dE1, (A2a)

ρ̃ j (E ) =
∫

ρ(E1)ρ(E1 + E ) fE1 (1 − fE1+E )dE1, (A2b)

where ρ j follows our assumption and disregards the corre-
lations, while ρ̃ j includes correlations. Setting the chemical
potential in the gap between E− and E+, as depicted in the left
panel of Fig. 3, we illustrate the insignificance of correlation
in the jDOS in the right panels. Figure 3(b) superimposes ρ j

and ρ̃ j , while Figs. 3(c) and 3(d) show their absolute and rel-
ative differences, respectively. Near zero energy in Fig. 3(d),
the normalized difference reaches about ±30%, which is due
to noise, given that the jDOS goes to zero in that region. We
find that when μ is located where the DOS is near zero, the
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FIG. 3. (a) Density of states (DOS) from three models approximating CdTe1−xOx using parameters in Table II, with x = 1%. Result
from the BAC-inspired Green’s function (blue), as in the main text, coherent potential approximation (CPA) of simple-cubic tight-binding
model (orange), and supercell calculation of 100 realizations of disorder in 303-site system (gray), shown as a histogram. The tight-binding
parameters are chosen to match the BAC DOS, used for both CPA and supercell calculations. (b) The uncorrelated jDOS ρ j and the correlated
jDOS ρ̃ j , as expressed in Eq. (A2b), for the supercell model, at zero temperature, with μ = −1.64 eV, as shown in (a) by a dashed vertical
line. (c) Absolute difference between ρ j and ρ̃ j . (d) Relative difference between ρ j and ρ̃ j . Collectively, (b)–(d) demonstrate that correlations
in the jDOS between E− and E+ are negligible.

relative difference between ρ̃ j and ρ j is only significant near
zero energy, where jDOS goes to zero. We also did not observe
any significant correlation when the chemical potential was
located inside E±, with the relative difference between ρ̃ j and
ρ j becoming larger than 1% only where the jDOS itself is near
zero (not shown).

APPENDIX B: ANALYTIC FORMS AND ASYMPTOTICS
OF Dj AND ρ j

1. Direct joint density of states

Using the sharp Ak in Eq. (9), the E1 and E2 integrals
in Eq. (3) become trivial. Furthermore, since Ek = h̄2k2/2m
is isotropic we can integrate the angles out to obtain a one-
dimensional integral

Dj (E ) = 1

V
∑

k

a−a+ fE− (1 − fE+ )δ(E+ − E− − E )

= V 2x

2π2

∫ ∞

0

fE− (1 − fE+ )

(E+ − E−)2
δ(E+ − E− − E )k2dk.

(B1)

Note that the factor of a−a+ originates from the nontrivial
spectral density of the HMA, and this extra factor produces

the (E+ − E−)2 in the denominator of Eq. (B1), which makes
Dj decay for large E , similar to the decay for the case of a
deep impurity level [30,31].

When Ed � 0, E+ − E− has a minimum at k = 0 with the
value

√
E2

d + 4V 2x. Therefore, the argument of the delta func-
tion in Eq. (B1) has a zero if E �

√
E2

d + 4V 2x, determining
the edge of Dj . Carrying out the delta function integral is
straightforward and gives

Dj (E ) =
(

2m

h̄2

)3/2 V 2x
√

Ed + √
E2 − 4V 2x

4π2E
√

E2 − 4V 2x
fÊ− (1 − fÊ+ )

× 	
(
E −

√
E2

d + 4V 2x
)
, (B2)

where Ê± = Ed + 1
2 (

√
E2 − 4V 2x ± E ), and 	 is the unit

step function. One can see that the fraction in Eq. (B2) decays
as E−3/2 for large E (see Table I). Since Dj in Eq. (B2) is
positive, continuous, and zero at the edge of direct transi-
tions ED =

√
E2

d + 4V 2x, it must have a peak. The width of
that peak is determined by |Ed |. In this case, Dj (E ) rises as√

E − ED. The peak is visible in the top panel of Fig. 2, which
is plotted for an HMA with Ed < 0.
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When Ed > 0, E+ − E− has a minimum at k = √
2mEd/h̄

with value 2V
√

x, which leads to a van Hove singularity at
ED = 2V

√
x with the same form as the van Hove singularities

in 1D materials with parabolic bands. That is, for E � ED,
Dj (E ) ∼ 1/

√
E − ED, which is divergent at the onset. This

one-dimensional-like form arises from the finite-k2 volume el-
ement when E+ − E− reaches its minimum value in Eq. (B1).
This divergence does not have a counterpart in the case of
single deep impurity state [30,31]. The van Hove singularity
arises only when Ak is sharp as in Eq. (9), in the limit of
� → 0 (see Table I). But when Ed > 0, � is nonzero and
broadens A±

k . Finite � turns the divergence of Dj into a peak
with a width determined by �. The peak is visible in the
bottom panel of Fig. 2, which shows an HMA with Ed > 0.

The other consequence of E+ − E− having a minimum at
finite k is that the argument of the delta function in Eq. (B1)
has two zeros when 2V

√
x < E <

√
E2

d + 4V 2x, which leads
to two separate contributions to the integral. However, for
large E , where the finite � effect is also unimportant, there
is only one contribution to the integral in Eq. (B1). Therefore,
the large-E behavior of Dj is the same for both positive and
negative Ed (see Table I).

2. Indirect joint density of states

To evaluate the non-k-conserving density of states in
Eq. (4), after integrating k and k′ out, we obtain a convolution

between the DOS of E− and E+ bands as

ρ j (E ) =
∫

dE1dE2ρ−(E1)ρ+(E2) fE1

(
1 − fE2

)
δ(E2−E1−E )

=
∫

dE1ρ−(E1)ρ+(E1 + E ) fE1

(
1 − fE1+E

)
, (B3)

which we can compute by employing the analytical ex-
pression given in Eq. (A1). The edge of ρ j is at the
minimum gap between the E+ and E− bands, given by Eρ =
1
2 (

√
E2

d + 4V 2x − Ed ), and it rises linearly, unlike the case
of a single deep impurity level (see Table I). The difference
occurs because here we have the convolution of two DOS
associated with E± rather than the transitions from one single
state to the DOS of a continuum. In the limit of large E , the E
dependence in Eq. (B3) comes from ρ+, which goes as

√
E , as

can be seen from Eq. (A1). Therefore, ρ j shows
√

E behavior
for large E , similar to absorption due to transitions from an
impurity state to a parabolic continuum. The more important
implication of this result is that since Dj decays as E−3/2, the
indirect transitions can dominate the large-E part of the E−
to E+ absorption spectrum, where the direct transitions are
suppressed. Figure 2 shows this effect away from the edge of
absorption.

Lastly, we note that nonzero � smears out the edge of ρ j

and has no significant effect on its large-E behavior.
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