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ABSTRACT
Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump–probe experiments
and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more.
In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we
call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a
two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We
demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We
derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman
diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain
clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing
clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump–probe spectroscopy
and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump–probe and 2D spectroscopy
to investigate multi-particle interactions in coupled systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139090

I. INTRODUCTION
A common technique to investigate ultrafast phenomena is

pump–probe (PP) spectroscopy. Here, a first laser pulse excites a
sample, and after some time delay T (“waiting time” or “population
time”), another laser pulse probes the temporal evolution. The tran-
sient change in absorption at each population time T is obtained
by measuring the transmitted spectrum of the probe pulse with
and without a prior excitation pulse. These transient maps, avail-
able as a function of T and of detection wavelength, can be used

to investigate ultrafast dynamics.1,2 Coherent two-dimensional (2D)
spectroscopy can be viewed as an extension of PP spectroscopy
that adds frequency resolution for the excitation step. 2D elec-
tronic spectroscopy was used to investigate the dynamics of various
different systems, such as light-harvesting complexes,3,4 reaction
centers,5 quantum dots,6,7 supramolecular aggregates,8,9 molecular
dimers,10 carbon nanotubes,11 and 2D materials.12,13 Exemplarily,
one can extract information on relaxation processes,14 homoge-
neous and inhomogeneous line shapes,15 energy transfer,16 chemical
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reaction kinetics,17 vibrational and electronic coherences,18 and
exciton delocalization.19 It is worth pointing out that the extraction
of state-to-state kinetic rate constants is uniquely determined for
2D spectroscopy under some basic conditions, such as the spectral
separation of excitonic states,20 unlike for PP spectroscopy where
the kinetic modeling is not unique. Note that we concentrate in
the present work on 2D electronic spectroscopy, but the underlying
concepts apply also to 2D infrared spectroscopy.21

In 2D spectroscopy, a sequence of ultrashort laser pulses inter-
acts with the system with varying time delays.21 The total number of
pulses for a conventional third-order 2D experiment is often either
three or four depending on the beam geometry.22,23 Either way, this
results in a 2D correlation map for each population time T in which
one axis is the excitation frequency and the other is the detection
frequency. In such a 2D map, excitation and detection of the same
transition result in a diagonal peak because the frequency in both
steps is the same. Electronic couplings show up as cross peaks for
T = 0, and energy transfer shows up as the time evolution of cross
peaks for T > 0, obtained from scanning the population time T
between the second pump pulse and the probe pulse.24 Analysis
of cross peaks can be used to determine properties such as exciton
delocalization and energy transfer.3,19,25

In the current work, we generalize the analysis to cases in which
signals in the 2D spectrum are separated by one or several multiples
of the fundamental transition frequency and thus constitute “higher-
quantum” peaks, and we also investigate how these signals herald the
presence of higher-order contributions to peaks at the fundamental
frequency or other, lower, multiple-quantum peaks. In conventional
PP and 2D spectroscopies, one seeks to obtain the response in third
order of perturbation theory. However, signals are often contami-
nated with higher-order contributions, and thus, we must extend the
analysis to higher orders in the electric field of pump pulses. Higher-
order contributions are well known in ultrafast experiments. In a
typical experiment, higher-order signals are not isolated, and their
influence becomes more relevant with stronger excitation intensity.
In intensity-dependent experiments, the influence of higher-order
signals was used to investigate 2D materials,26 nanorods,27 silicon
nanocrystals,28 and chemical reactions.29 For excitonic systems,30–36

higher-order signals are sensitive to multi-exciton interactions, such
as exciton–exciton annihilation.

Consider, for example, the investigation of photosynthesis with
ultrafast spectroscopy.14,37–40 Natural light-harvesting systems uti-
lize multiple chromophores to absorb light. These chromophores
act as an “antenna” and a “funnel,” directing the absorbed energy
to the reaction center of the photosynthetic complex.41 If in such
a system single-exciton dynamics are investigated but the excita-
tion power is too high, multiple excitons will be generated, leading
to distorted kinetics.30,42–44 In terms of interaction with the light
field, such a regime can be described by additional interactions with
the excitation fields, i.e., more than the usual two “pump” interac-
tions in third-order nonlinear experiments. For example, fifth-order
contributions add the dynamics of exciton–exciton annihilation to
the single-exciton dynamics. The onset of exciton–exciton annihila-
tion depends on the system and on excitation conditions. Thus, in
order to reduce artifacts, the accepted approach is to measure time-
dependent signals for different excitation intensities. If the intensity
change leads to a change in the kinetic evolution, one has to atten-
uate the excitation power until no such changes are observed.45

The problem is that reducing the excitation power also reduces the
overall signal such that the signal-to-noise ratio decreases if the
acquisition time is held constant. In extended systems with large
absorption cross sections, such as molecular aggregates, polymers,
or natural-light harvesting complexes, it may become impractical to
achieve an adequately high signal-to-noise ratio in the annihilation-
free regime, and then, one must accept compromises that may lead
to erroneous interpretation of kinetic time constants. In addition,
the criterion for a sufficiently small change of kinetics upon power
reduction is often subjective.

In recent years, higher-order multidimensional nonlinear spec-
troscopy gained popularity.36,46–58 Higher-order spectroscopy can
be used to measure higher-excited states of molecules,47,48 energy
transfer in light-harvesting complexes,46 high-frequency vibronic
modes,50 exciton–exciton annihilation,52,54,59 multiexciton states
in quantum dots,56,57 coherences between multi-particle collec-
tive states,58 exciton diffusion in aggregates and polymers via
annihilation,35,36,53 and non-equilibrium superconducting states
in semiconductors.60 In coherently detected higher-order spec-
troscopy, a polarization higher than third order is measured, which
requires more than three interactions with excitation fields. In
action-detected spectroscopy,61–64 higher-order signals are con-
nected to perturbation terms higher than fourth, rather than
third, order because of the detection of a population in an
excited state.54 In this publication, we focus on coherently detected
spectroscopy.

In the pump–probe geometry, where three pulses interact with
the system (i.e., two pump pulses and one probe pulse), higher-order
signals can be isolated by their position along the excitation fre-
quency axis in the 2D spectrum. At low excitation intensities, each
pulse interacts once with the system, and the signal is emitted in the
phase-matched direction ± ka ∓ kb + kc = kc since ka = kb for the
first two collinear pump pulses and kc is the wavevector of the probe
pulse. The “±” and “∓” signs reflect the fact that in the pump–probe
geometry, the sum of rephasing and non-rephasing spectrum, i.e.,
the absorptive part of the spectrum, is directly obtained. The delay
between the pump pulses, τ, is varied, and a Fourier transform taken
with respect to τ to obtain the excitation axis of the correlation maps
as a function of ωτ . The first pump pulse excites a single-quantum
coherence (1Q), and therefore, the signal appears at around the
central frequency of the pump pulse along the excitation axis. The
probe pulse excites a 1Q coherence as well, and therefore, the signal
position along the detection axis is also fixed at around the central
frequency of the probe pulse. We call this the “1Q1Q signal.” Note
that the position of the signal is only approximately located at (in
this case, single) multiples of the central laser frequency because the
exact position is influenced by the absorption and emission spectra
of the system.65

For the increasing intensity of pump pulses, multiple interac-
tions with the excitation field take place, leading to higher-order
signals. One possible signal of next-highest order, with the phase-
matching condition ±2ka ∓ 2kb + kc, is emitted in the same direc-
tion, kc, as the 1Q1Q signal (still for ka = kb in pump–probe
geometry). However, due to one more additional interaction with
the first pump pulse, the system evolves in a two-quantum (2Q)
coherence after the first pump pulse, and the signal appears at
around twice the central frequency of the pump spectrum. That is,
if data are acquired with sufficiently small spacing of τ, the signal
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from this process will be separated in frequency from the 1Q1Q
signal. The probe pulse still only interacts once with the system, and
we thus call this the “2Q1Q signal.” We will focus, in this publica-
tion, on multiple interactions occurring with the pump pulses and
consider the probe pulse to be always weak. Therefore, the second
coherence in the signal stays always at the 1Q level, and we will
drop this part of the label for the sake of simplicity. We utilized the
2Q signal previously to investigate exciton–exciton annihilation and
exciton diffusion in supramolecular aggregates and polymers.35,36,53

Other methods to isolate 2Q signals use a noncollinear setup in
which the three pulses interact with the sample from three differ-
ent directions, in which case ka ≠ kb, and the rephasing (−ka + kb
+ kc) and non-rephasing (+ka − kb + kc) signals are measured sep-
arately.55 The 1Q and the 2Q signals are then separated by their
distinct phase-matching directions. As we have shown recently, it is
also possible to isolate 1Q and 2Q signals in PP spectroscopy.66–68

In that method, PP signals are measured at different excitation
intensities from which different signals are extracted.

As mentioned above, the excitation intensity has to be cho-
sen carefully in conventional PP or 2D spectroscopy experiments to
reduce uncontrolled mixing of higher-order signals. In PP geometry,
only odd orders of the nonlinear polarization are, in general, present
due to the phase-matching condition. The 1Q signal contains, how-
ever, not only the usually desired third order but also all odd orders
beginning with the third. The 2Q signal is a higher-order signal; it,
likewise, not only contains fifth-order terms but also includes all
odd orders beginning with the fifth. Thus, if the dynamics of the
1Q signal do not change with the increasing excitation intensity, the
1Q signal is dominated by a third-order response and the influence
of higher-order contributions can be considered minor. The same
principle holds for the 2Q signal: If the dynamics of the 2Q sig-
nal do not change as the excitation intensity increases, then the 2Q
signal is dominated by the fifth-order response in terms of perturba-
tion theory. However, in general, all nQ signals inherently contain
higher-order contributions, starting at order 2n + 1 of perturbation
theory, but their strength can be difficult to quantify experimentally.
Therefore, even an isolation of different nQ signals in 2D and PP
experiments, where n marks at how many multiples of the funda-
mental laser frequency the pump-induced coherence oscillates, does
not allow for a clean separation of different orders of nonlinearity.

Inspired by isolating clean nonlinear signals in PP
spectroscopy,66–68 we introduce a method for isolating signals
of clean nonlinear orders in 2D spectroscopy in the PP geometry.
Our approach works for any nQ signals at around n times the
central frequency of the pump pulse along the excitation axis. As
an example, we measure the 1Q, 2Q, and 3Q signals of squaraine
oligomers and show how these signals can be used to eliminate fifth-
and seventh-order contributions at the 1Q signal and, therefore,
obtain a clean third-order signal even at high excitation intensities.
This procedure works for nQ signals that are integrated over their
respective excitation frequency.

This paper is structured as follows. In Sec. II, we discuss the
theoretical concepts of isolating higher-order signals focusing on
double-sided Feynman diagrams. Starting with general relations
between nQ signals and nonlinear orders in perturbation theory
(Sec. II A), we demonstrate how the nQ signals can be isolated at
τ = 0 in 2D spectroscopy (Sec. II B) and PP spectroscopy (Sec. II C)
and then demonstrate how individual nonlinear orders may be

extracted from the nQ signals (Sec. II D). Section III contains the
experiment. After we discuss the experimental setup and the sample
in Sec. III A, we show exemplary 1Q, 2Q, and 3Q signals obtained on
squaraine oligomers from 2D spectroscopy (Sec. III B) and PP spec-
troscopy (Sec. III C). In Sec. III D, we demonstrate how the clean
third-order signal can be retrieved in both techniques by weighting
and adding the different nQ signals. In Sec. IV, we summarize the
main results and provide an outlook to future experiments.

II. THEORY OF HIGHER-ORDER SPECTROSCOPY
A. Relation between multi-quantum signals
and perturbative orders

Generally speaking, nQ signals, which we will denote as SnQ,
are those signals that oscillate in coherence time τ at roughly n
times the central frequency, ω0, of the pump laser spectrum. In
this paper, we take advantage of this separation of nQ signals along
ωτ (see Fig. 1 for an illustration of this effect). nQ signals are also
often defined by the phase-matching condition that can be used to
separate them, when three laser pulses with different wavevectors
ka, kb, kc are incident upon a sample.66–68 In this case, the rephas-
ing nQ signals appear along the −nka + nkb + kc direction, and the
non-rephasing nQ signals appear along the +nka − nkb + kc direc-
tion. In this paper, we focus on the case of PP geometry, where the
first two pulses are collinear (ka = kb). Therefore, all of the rephas-
ing and non-rephasing nQ signals propagate with wavevector kc and
are all measured simultaneously as a change in the absorption of the
probe pulse (pulse c). In the PP geometry, nQ signals can also be
obtained by phase cycling (varying the relative phase between the
first two pulses). In this paper, we will use both phase cycling and
separation by ωτ to study the nQ signals.

As shown schematically in Fig. 1, the lowest-order contribu-
tion to nQ signals derives from a (2n + 1)th-order polarization in
the sample. However, nQ signals always have contributions from
higher-order terms as well. As with any nonlinear optical signal, we
can expand SnQ in orders of electric field amplitudes such that SnQ

is expressed as a sum over the perturbative terms S(2r+1)
nQ , where the

sum runs over r = n, . . . ,∞.
In order to make the perturbative expansion of the nQ signals

precise, we write the electric fields as

E(t) = ∑
j=a,b,c

ejεj(t) + e∗j ε∗j (t),

where ej is the polarization vector and ε j(t) is the complex
amplitude of pulse j,

εj(t) = A j(t − t j)e−i[ω j(t−t j)−k j ⋅r−ϕ j].

Here, Aj is the complex envelope function (which includes spectral
phase information of second order or higher in a Taylor expansion),
ωj is the central frequency, kj is the wavevector, ϕj is the absolute
phase, tj is the pulse arrival time, and r is the position. In a 2D
experiment, three different time delays can be distinguished. The
coherence time τ describes the delay between the first two pulses.
The population time T is the delay between the center of the sec-
ond pump pulse and the probe pulse. The signal time t is the delay
between the probe and the emission of the signal. The signal in time
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FIG. 1. Exemplary single- and multiple-quantum Feynman diagrams and their fre-
quency positions up to seventh order in perturbation theory. The 1Q signal appears
at the excitation frequency ω0. The 2Q and 3Q signals appear at two and three
times ω0, respectively. Without contaminations, nQ signals would correspond to
(2n + 1)th nonlinear orders represented exemplarily by the diagrams on the diago-
nal. Contaminations arise from the diagrams below the diagonal. The time periods
in which the 1Q, 2Q, and 3Q coherences arise are marked by colored rectangles.

t is usually measured implicitly by using a spectrometer, allowing for
a direct measurement with respect to the Fourier conjugate variable
ωt . The phase of the emitted signals can be inferred via linear super-
position with a known reference pulse, the “local oscillator.” In PP
geometry, the probe pulse itself is the local oscillator, and thus, the
intensity of the transmitted probe pulse is measured. By construct-
ing the change in optical density, OD [see Eq. (16) in Sec. III A], we
extract the transient nonlinear signal, which we refer to throughout
this section as S.

Consider that we keep pulse shapes A j(t) constant but scale
their amplitudes, so A j(t) = λ jA j,0(t), where λj is unitless and
A j,0(t) is the underlying shape. We focus on the case where the
first two pulses are identical except for their arrival times, tj, and
their absolute phases, ϕj, so Aa,0(t) = Ab,0(t) and λa = λb = λ. We
assume that pulse c is weak with unchanged amplitude and expand
SnQ perturbatively in powers of λ,

SnQ =∑
∞

m=nS(2m+1)
nQ λ2m,

where, as noted before, SnQ are the nQ signals and S(2m+1)
nQ are

the perturbative expansion terms of those nQ signals. We define

IP = λ2, where the subscript P stands for pump and the letter I indi-
cates that this quantity is related to a unit-less scaling factor for the
pump intensity. Therefore, nQ signals can be expanded in powers of
the intensity as

SnQ(τ, T, ωt , IP) =∑
∞

m=nS(2m+1)
nQ (τ, T, ωt)Im

P , (1)

where again we assume that pulse c is weak, and we ignore the
dependence upon λc as we do not vary the intensity of the weak
probe. Equation (1) includes the arguments τ, T, ωt to show the
explicit dependence of these signals with respect to experimental
parameters. The left-hand side of Eq. (1) also includes an argument,
showing that SnQ is a function of the pump power, whereas the
perturbative expansion terms S(2m+1)

nQ do not depend on the pump
power (although they do depend on the shape of the pulses).

Our goal is to isolate S(2m+1)
nQ signals from each other. We prove

in the supplementary material (Sec. SIII) that the perturbative nQ
terms are related to one another at τ = 0 as

S(2n+1)
rQ (τ = 0, T, ωt) =

⎛
⎜
⎝

2n

n − r

⎞
⎟
⎠

S(2n+1)
nQ (τ = 0, T, ωt), (2)

where r ≤ n. Equation (2) is the same as Eq. (S6) of the
supplementary material. This relationship represents the key insight
of this paper. It allows for the separation of the leading order S(2n+1)

nQ
at τ = 0 once the nQ signals are measured. We emphasize that our
correction procedure is only valid for τ = 0, i.e., integrated 2D sig-
nals. We will explain in detail how to use this result to obtain
individual perturbative signals in Sec. II D. We now give some
physical intuition for understanding Eq. (2) by comparing Feynman
diagrams that contribute to S(5)1Q (τ = 0, T, ωt) and S(5)2Q (τ = 0, T, ωt).
Some example diagrams for both signals are displayed for a visual
comparison in Fig. 2.

Double-sided Feynman diagrams are a common tool for visu-
alizing and calculating various excitation pathways of the nonlinear
polarization that contribute to a spectroscopic signal.69 In these
diagrams, time runs from bottom to top. The density matrix is
depicted in between two vertical lines. Interactions with electric
laser fields are shown as arrows that represent either an excita-
tion or a de-excitation of the system depending on whether an
arrow points toward or away from the density matrix, respectively.
The nonlinear polarization is emitted in a phase-matching direc-
tion that is dictated by the incident wavevectors. It is also possible
to isolate different signals based on relative phases between pulses.
An arrow pointing to the left contributes with a wavevector −kj
and a phase of −ϕj and an arrow pointing to the right contributes
with +kj and +ϕj to the nonlinear polarization. We present this
discussion with the possibility of non-collinear pump pulses such
that ka ≠ kb.

The impulsive limit is often assumed when performing calcu-
lations or developing intuition for the signals that are measured in a
2D experiment. The impulsive limit corresponds to the assumption
that none of the pulses overlap in time. However, in realistic exper-
iments, the first two pulses always overlap when the coherence time
is smaller than the pulse duration, which is of critical importance
in this article. Thus, we will not assume time ordering between the
first two pulses. Furthermore, when the population time is smaller
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FIG. 2. Example stimulated-emission-type double-sided fifth-order Feynman diagrams. For better understanding, we show the evolution of the density matrix explicitly with
the ground state ∣0⟩, a singly excited state ∣1⟩, and a doubly excited state ∣2⟩. (a) For the fifth-order signal at the 2Q position, each pump pulse (pulse a in red and pulse b
in green) interacts twice with the system, while pulse c (black) only interacts once. The phase-matching direction that is connected to this diagram is −2ka + 2kb + kc. (b)
Four equivalent diagrams can be constructed that correspond to a fifth-order signal at the 1Q position. Diagrams A and B are time-ordered since all interactions with pulse a
occur before any interactions with pulse b, while diagrams C and D exhibit partial time-ordering since the interactions with the two pulses are intertwined. Nevertheless, all
four diagrams must be considered at τ = 0.

than the pulse duration, no time ordering exists for the interaction
with the third pulse either (with respect to the first two pulses), and
we must consider all possible temporal orderings of interactions. For
population times, further away from zero, pulse c always arrives last
and is well separated in time from pulses a and b, which is a situation
we will call partial time ordering.

In partial time ordering, sixteen double-sided Feynman dia-
grams describe the third-order rephasing signal, and a closely related
set of sixteen Feynman diagrams describe the non-rephasing sig-
nal. The numbers of rephasing and nonrephasing diagrams reduce
to six if the rotating-wave approximation (RWA) is applied;69 see
the supplementary material (Sec. SI). We focus our discussion in the
main text on rephasing signals. All the arguments and derivations we
provide apply equally to non-rephasing signals, which is discussed in
the supplementary material (see especially Sec. SI). When full time
ordering holds (that is, none of the pulses overlap), the rephasing
signal is described by three diagrams that can be further classified as
ground-state bleach (GSB), stimulated emission (SE), and excited-
state absorption (ESA). If time ordering between pump pulses and
probe pulse does not hold, a total of 16 diagrams contribute to the
third-order signal.70 We show the full set of double-sided Feynman
diagrams for different cases of time ordering in the supplementary
material (Sec. SI).

Let us now discuss at which frequency positions and with
which amplitudes higher-order signals contribute because we want
to derive an exact relationship between the signals that appear at dif-
ferent excitation frequency positions. The fifth-order signal as the
next higher-order signal appears at two different positions in a 2D
spectrum: (1) at the 1Q excitation coordinate as a contamination of
the third-order signal and (2) at the 2Q excitation coordinate (2ω0)
as a new signal, i.e., the 2Q signal.

The presence of a fifth-order 2Q signal, S(5)2Q , guarantees that

the 1Q signal is contaminated by fifth-order signals such that S(5)1Q is
no longer negligible. The fifth-order contamination to the 1Q signal
must obey the 1Q phase-matching condition, so such contamination
occurs with two additional interactions with the same pulse, either

a or b, but with oppositely signed wavevector contributions such
that the emitted signal direction is not altered. That is, where the
1Q signal occurs at −ka + kb + kc, the fifth-order contamination to
the 1Q signal corresponds to interactions at −ka + ka − ka + kb + kc
or, equivalently, for triple interaction with kb. In these cases, the
contamination leads to a contribution to the 1Q signal from multi-
particle dynamics and to a change of the linear scaling of the 1Q
signal with higher excitation powers.71,72

At even higher pump-pulse powers, the amplitude of the
seventh-order signals will get stronger and exceed the noise thresh-
old of the experiment, at which point they contribute significantly
to the 2D spectrum at three different locations (as illustrated in
Fig. 1 by the largest light-blue circles): (1) as a contamination of
the 1Q signal, (2) as a contamination of the 2Q signal, and (3)
as a signal that we call the 3Q signal, and similarly for yet higher
orders. In Fig. 1, we show different positions of the 1Q, 2Q, and
3Q signals in the 2D spectrum with representative diagrams below.
In Fig. 1, we consider diagrams up to seventh-order contributions.
Higher-order contributions, such as the ninth-order signal, would
add additional diagrams to Fig. 1 contributing to the 1Q, 2Q, and
3Q signals and diagrams to a 4Q signal. Note that Feynman dia-
grams do not include state labels as they customarily do because the
conclusions we draw from our analysis of time-dependent perturba-
tion theory are valid for any system and any type of states evolving
between the pulses. Furthermore, we do not show the arrow rep-
resenting the emission of the signal for any of the diagrams shown
in this publication. Each column below the respective nQ signal in
Fig. 1 contains the contributing nonlinear orders, each depicted by
one exemplary out of many double-sided Feynman diagrams; Sec.
SIV of the supplementary material gives the number of diagrams
contributing at 1Q, 2Q, and 3Q, up to seventh order. The diagrams
on the diagonal correspond to the lowest-order nonlinear signal that
contributes to a specific nQ signal, and therefore, no diagrams above
the diagonal are present. For example, the lowest-order signal at the
2Q position is of fifth order. Let us take a closer look at off-diagonal
diagrams that represent the contamination by higher-order contri-
butions. The contaminations must include pairs of interactions with
a single pulse to maintain the phase-matching conditions associated
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with each type of signal. For example, the fifth-order signal con-
tributing to 1Q has two more interactions with pulse a, as compared
to third order, and those additional interactions occur with oppo-
site wavevectors, i.e., arrows pointing in opposite directions in the
double-sided Feynman diagram.

In the weak-probe limit, fifth-order signals S(5)1Q and S(5)2Q share
many features. Both signals report on the same population dynam-
ics and have the same line shapes along the detection frequency axis
because the interaction with the probe pulse results in the same state
of the system for both contributions. However, the line shapes dif-
fer along ωτ since 1Q and 2Q evolve differently during τ, i.e., the
colored red and blue rectangles in Fig. 1, respectively, in the fifth-
order row occur after different numbers of prior-interaction arrows.
Equation (2) tells us that at τ = 0, S(5)1Q = 4S(5)2Q if both pump
pulses have identical shape. This equivalence can be proven by
studying Feynman diagrams that contribute to these signals, and
we motivate the proof visually in Fig. 2 using an exemplary set
of diagrams.

For the example diagram of S(5)2Q [Fig. 2(a)], each pump
pulse interacts twice with the system, producing the overall phase-
matching direction −2ka + 2kb + kc. After the interaction with pulse
a, the system evolves in a 2Q coherence, while during the population
time, a population in a doubly excited state is reached. Other types
of diagrams with a ground-state population or a single-exciton pop-
ulation after the interaction with pump pulses can also contribute to
the signal.54,66–68 Pulse c only interacts once with the system. In the
case where pulses a and b have identical envelopes, Aa(t) = Ab(t),
and polarizations, ea = eb, four fifth-order diagrams at the 1Q posi-
tion can be constructed [Fig. 2(b)] that are identical to the diagram
in Fig. 2(a) if we disregard the pulse labels for pulse a and pulse b.
That is, while the 1Q diagrams contribute to the signal at ωτ = ω0
and the 2Q diagram contributes to the signal at ωτ = 2ω0, when we,
instead, consider τ = 0, all five of these diagrams produce identical
contributions to the signal since there is no distinction between the
a and b pulses.

We can construct all the fifth-order diagrams at the 1Q posi-
tion by taking each diagram that contributes at the 2Q position
and changing one interaction from a to b or vice versa. For each
2Q diagram, four different 1Q diagrams can be constructed, each
with identical signal weight to the 2Q diagram at τ = 0. We demon-
strate this relationship between 1Q and 2Q signals visually for every
fifth-order diagram that obeys partial time ordering in Fig. S2 of the
supplementary material. The key difference between the 2Q diagram
and its four 1Q partners is that the 2Q diagram has two interactions
with each pulse, while the 1Q diagrams have a single interaction with
one pump pulse and three interactions with the other. Indeed, if we
ignore labels “a” and “b” in the diagrams displayed in Fig. 2, we see
that each of the diagrams looks identical, i.e., they include the same
states and processes during the population time. The contribution of
each diagram in Fig. 2 evolves differently as τ changes, which is why
our argument only applies at τ = 0. Note that although we included
the state labels in Fig. 2, we do not need to do so because the equiva-
lence of the diagrams does not depend on the specific states that are
involved.

The example shown in Fig. 2 contains the key idea of this arti-
cle: For every diagram contributing to S(5)2Q , we can construct four

equivalent diagrams that contribute to S(5)1Q at τ = 0. The diagrams
of the 1Q and 2Q signal are equivalent since they differ only by
swapping an “a” label to “b” or vice versa, and the “a” and “b”
pulses are identical at τ = 0. The diagrams contributing to the
frequency-resolved 1Q and 2Q signal differ by which specific pulses
the interactions occur. We demonstrate how the τ = 0 components
of nQ signals may be extracted from a single 2D spectrum in Sec. II B.
When the two pump pulses overlap, but time ordering between the
pump and probe pulses holds, S(5)2Q is described by 54 diagrams. If
time ordering between a pump and a probe is not fulfilled either, the
number of diagrams for S(5)2Q increases to 240. In all cases, for each

diagram that contributes to S(5)2Q , there are four diagrams that give an

equivalent contribution to S(5)1Q at τ = 0. The fifth-order contamina-

tion at the 1Q position, S(5)1Q , is precisely four times the fifth-order

signal at the 2Q position, S(5)2Q , and can be described by 216 dia-
grams in the partial time ordering case and 960 diagrams in the
case of no time ordering between pump and probe pulses. We show
the full set of double-sided Feynman diagrams for the two con-
tributions in the partially time-ordered case in the supplementary
material (Sec. SII). All diagrams were generated using an auto-
mated diagram generator also delivering the count numbers quoted
above.70

We show in this article that we can use the measured nQ signals
for n > r to eliminate higher-order contaminations in the rQ signal
and obtain clean nonlinear signals. For example, the measurement
of the 2Q signal allows us to eliminate the fifth-order contamina-
tion at the 1Q position, resulting in a clean third-order signal. Since
fifth-order contributions at the 1Q and 2Q position have different
line shapes along ωτ , the relationship between the two signals as a
function of ωτ is not straightforward, and thus, we leave any dis-
cussion of an optional correction of the ωτ line shapes for future
work. We now turn our attention to describing two different meth-
ods of extracting the τ = 0 contributions to nQ signals. The first
method described, in Sec. II B, involves integrating nQ signals over
their respective frequency regions along the ωτ axis. Note that such
finite-interval integrations (over each nQ region separately) are not
equivalent to an integration over all ωτ , which would correspond to
a measurement at τ = 0 according to the projection-slice theorem.
The second method, described in Sec. II C, involves extracting dif-
ferent nQ signals in PP spectroscopy (i.e., for τ = 0) by exploiting
their dependence on pump intensity.66,68 We again note that nQ sig-
nals can also be measured individually using phase matching. After
describing two methods of extracting nQ signals, we demonstrate in
Sec. II D how to use the relationship between them, shown in Eq. (2),
to extract the individual nonlinear orders.

B. Isolation of nQ signals in 2D spectroscopy
In the case of the PP geometry, the two pump pulses travel

along the same direction (ka = kb), and therefore, all nQ signals have
the same wave vector +kc, and thus, all are detected as a change in
the probe absorption. The total nonlinear signal induced by pump
pulses may be written as

S(τ, T, ωt) =
∞

∑
n=1

SnQ(τ, T, ωt), (3)
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where we suppress the dependence on the pump intensity IP for
this subsection because IP remains fixed for this analysis. The multi-
quantum signals SnQ(τ, T, ωt) oscillate at roughly nω0 as a function
of τ and can thus be separated by taking the Fourier transform with
respect to τ. However, we can see by inspecting Eq. (3) that at τ = 0,
all nQ signals add together and are not experimentally separable.
Therefore, we cannot take a single measurement at τ = 0 and obtain
the separated nQ signals. We now demonstrate how we separate the
τ = 0 components.

When inspecting the 2D spectra obtained by taking the Fourier
transform with respect to τ,

S̃nQ(ωτ , T, ωt) = ∫ dτ eiωτ τSnQ(τ, T, ωt), (4)

we expect to see peaks along the ωτ axis near multiples of the pump
pulse center frequency ω0, as shown schematically in Fig. 1. If the
pump pulse has a bandwidth Γ, we expect the signal S̃1Q(ωτ , T, ωt)

to be mostly localized within the bounds [ω0 − Γ/2, ω0 + Γ/2]. More
generally, we expect the signals S̃nQ(ωτ , T, ωt) to be mostly localized
within the bounds [nω0 − Γ/2, nω0 + Γ/2].

We briefly note that the separation of nQ signals along the ωτ
axis is not guaranteed. Fortunately, if the signals did not separate, it
would be visually clear: Instead of localized signals appearing around
multiples of ω0 (as illustrated in Fig. 1), the signals would blend
into each other. In such a case, the technique proposed in this paper
would not be expected to work; see Sec. SXIII of the supplementary
material for two examples where the separation of signals breaks
down. We do, in fact, observe a breakdown in signal localization
for population times close to 0, which results in errors in extracting
nQ signals for those population times (see Sec. III D and Secs. SXII
and SXIII for further discussion in the supplementary material). For
the purposes of this discussion, we will assume that the signals do
separate along ωτ .

Since nQ signals separate along the ωτ axis, we can recover, to
a good approximation, the τ = 0 component of each individual nQ
signal using

SnQ(τ = 0, T, ωt) ≈ ∫

nω0+Δ

nω0−Δ
dωτ S̃(ωτ , T, ωt), (5)

where Δ ≤ ω0/2. To understand why Eq. (5) gives the nQ signal at
τ = 0, it is helpful to recall that in the case where Δ→∞, we obtain
the total signal S at τ = 0 by the projection-slice theorem.21,73 Since
nQ signals separate along the ωτ axis, we can obtain a good approxi-
mation of SnQ(τ = 0, T, ωt) using Eq. (5). We can understand why
the partial integration recovers τ = 0 components of separate nQ
signals in a different way by substituting Eq. (4) into Eq. (5). This
substitution leads to

SnQ(τ = 0, T, ωt) = ∫

nω0+Δ

nω0−Δ
dωτ∫

∞

−∞
dτ eiωτ τS(τ, T, ωt)

and, interchanging the integrals,

SnQ(τ = 0, T, ωt) = 2Δ∫
∞

−∞
dτ einω0τS(τ, T, ωt)

sin (τΔ)
τΔ

. (6)

With increasing Δ, the sinc function becomes increasingly localized
around τ = 0. In the limit of large Δ, we obtain

lim
Δ→∞

Δ
sin (τΔ)

τΔ
= πδ(τ).

This limit corresponds to integrating the complete 2D spec-
trum along ωτ and would recover the experimentally measured sig-
nal S(τ = 0, T, ωt). Setting an appropriate Δ thus leads to a selection
of the nQ signal for each given n, while restricting the interferogram
closely to τ ≈ 0. In the absence of noise, Δ = ω0

2 is the optimal choice.
However, in the presence of noise, smaller values of Δ may be desir-
able if nQ signals are well localized near multiples of ω0 along the ωτ
axis. In such a case, using the largest value Δ = ω0

2 may simply add
noise to the recovered signal.

We have thus far shown that we can, to good approximation,
separate the contributions SnQ(τ = 0, T, ωt) via the use of a sinc fil-
ter, as shown in Eq. (6), even though those individual nQ signals
cannot be experimentally directly measured at τ = 0 in the collinear
PP geometry.

C. Isolation of nQ signals in PP spectroscopy
We now discuss how to, instead, extract the signals

SnQ(τ = 0, T, ωt) in PP spectroscopy, rather than 2D spectroscopy,
using phase cycling. The signals SnQ(τ, T, ωt) may be extracted for
any τ by controlling the relative phase between the first two pulses,
ϕba = ϕb − ϕa. One takes repeated measurements of the transient
absorption of the probe pulse for different values of ϕba and then
takes the discrete Fourier transform with respect to the varying ϕba.
In this way, the discrete Fourier transform over the phase difference
replaces the spatial signal separation that occurs in phase matching
when the wavevectors are distinct (ka ≠ kb).74–76 The procedure for
carrying out phase cycling is well-known,77 and we briefly describe
the method here.

For each τ and T, the change in the probe absorption is mea-
sured for ϕba = ϕp =

πp
N , where p = 0, 1, . . . , 2N − 1. We denote the

nonlinear transient signal obtained as S(τ, T, ωt , ϕp). The discrete
Fourier transform over ϕp is

S̃k(τ, T, ωt) =
1

2N(1 + δk,N)

2N−1

∑
p=0

e−ikϕp S(τ, T, ωt , ϕp), (7)

where the factor (1 + δk,N) corrects for signal aliasing that occurs at
k = N.78 For k = n < N, we have S̃n = SnQ and S̃2N−n = S∗nQ. For the
degenerate point k = N, Eq. (7) gives S̃N = Re[SNQ]. Phase cycling
requires precise control of the relative phase between the two pump
pulses, for example, using a pulse shaper. We solely focus on τ = 0.
We demonstrate elsewhere66–68 that at τ = 0, phase cycling is, in fact,
intensity cycling of a single pump pulse since at τ = 0, there is, in fact,
only one pulse (with the two pump pulses precisely overlapping in
space and time). To understand this relationship, consider the sum
that the first two pulses have the same envelope and let their sum be
EP(t) = Ea(t) + Eb(t). We let EP = εP + c.c., where

εP(t) = ei(ω0t−kP ⋅r)
⎛
⎜
⎜
⎜
⎝

A0(t)
²

pulse a

+ A0(t + τ)ei(ω0τ+ϕp)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pulse b

⎞
⎟
⎟
⎟
⎠

,
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wherein the complex-valued envelope A0(t) contains the temporal
amplitude evolution, an overall absolute phase shared between all
pulses, and any spectral phase of second order or higher in Tay-
lor expansion, i.e., any chirp, kP is the common wavevector of both
pulses, ω0 is the carrier frequency, r is the position (which is inte-
grated out when taking into account the phase-matching condition
from propagation through the sample), and c.c. denotes the complex
conjugate of the previous term. The temporal intensity Ip(t) ≡ ∣εp∣

2

at τ = 0 is then given by

Ip(t) = 4I0(t)cos2
(

ϕp

2
), (8)

with I0 = ∣A0∣
2 as a “base” pump intensity whose meaning is

discussed below.
From Eq. (8), we see that in a PP experiment, in which there is

no delay between the two pulses, phase cycling reduces to changing
the intensity of the single excitation pulse. That intensity change is
conceptually related to the constructive or destructive interference of
the two formally coincident pump pulses. Using the known relation
from phase cycling77 but making use of Eq. (8), we can rewrite Eq. (7)
to find the signals SnQ at τ = 0 as

SnQ(τ = 0, T, ωt , I0) =
1

2N(1 + δn,N)

2N−1

∑
p=0

e−inϕp S(τ = 0, T, ωt , Ip),
(9)

where the multi-quantum index is n ≤ N and p is the intensity-
cycling step index. Note that we have replaced S̃k in Eq. (7) with SnQ
in Eq. (9) because we have restricted n ≤ N and because SnQ are real-
valued at τ = 0 so that S̃N = Re[SNQ] is no longer a special case. The
argument I0 on the left-hand side of Eq. (9) indicates that all the nQ
signals are obtained at a single power, specifically the base power.
This contrasts with the terms inside the sum on the right-hand side
of Eq. (9), which are the PP signals measured at varying powers Ip.
The signal S(τ = 0, T, ωt , Ip) is the same as in Eq. (1).

In the general case where τ ≠ 0, phase cycling involves 2N sep-
arate phase-cycling steps according to Eq. (7). However, when τ = 0,
phase cycling reduces to the intensity cycling of Eq. (8). In this
case, we find that N − 1 values of the 2N values of intensity, Ip, are
redundant because

cos2 π(2N − p)
2N

= cos2 πp
2N

, p = 1, 2, . . . , N − 1. (10)

As a result, the intensities Ip for p = 1, 2, . . . , N − 2, N − 1 and for
p = 2N − 1, 2N − 2, . . . , N + 2, N + 1, respectively, are the same, and
therefore, the signals collected at those intensity pairs must be the
same. We omit the value p = N, which corresponds to zero inten-
sity, and note that p = 0 has no redundant partner. Given that
e−inϕp + einϕp = 2 cos (nϕp), we may combine the redundant terms in
Eq. (9) to obtain

SnQ(τ=0, T, ωt , I0)=
N−1

∑
p=0

2 − δp,0

2N(1 + δn,N)
cos(

npπ
N
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w(nQ)

p

S(τ=0, T, ωt , Ip),

(11)

where we define w(nQ)
p as the weights to be multiplied with the “raw”

data S(T, ωt , τ = 0, Ip) to retrieve a particular nQ signal via linear

combination. The Kronecker delta δp,0 arises because the p = 0 value
had no redundant partner in Eq. (10).

We now give an explicit example of how to use Eqs. (8) and (11)
in order to isolate signals up to 3Q using N = 3. The 1Q signal can
be isolated by setting n = 1 in Eq. (11) and using Eq. (8) to find the
values of Ip, which results in

S1Q(T, ωt , I0) =
1
6
(S(T, ωt , 4I0) + S(T, ωt , 3I0) − S(T, ωt , I0)).

(12)
Analogously, with the same N = 3 dataset, we can isolate the 2Q
signal with n = 2 by

S2Q(T, ωt , I0) =
1
6
(S(T, ωt , 4I0) + 2 cos(

2π
3
)S(T, ωt , 3I0)

+ 2 cos(
4π
3
)S(T, ωt , 3I0))

=
1
6
(S(T, ωt , 4I0) − S(T, ωt , 3I0) − S(T, ωt , I0))

and the 3Q signal with n = 3 by

S3Q(T, ωt , I0) =
1

12
(S(T, ωt , 4I0) + 2 cos (π)S(T, ωt , 3I0)

+ 2 cos (0)S(T, ωt , I0))

=
1

12
(S(T, ωt , 4I0) − 2S(T, ωt , 3I0) + 2S(T, ωt , I0)).

In order to isolate nQ signals for n > 3, the number of intensity-
cycling steps must be increased to N = n, resulting in smaller steps
between the intensities.

D. Extraction of nonlinear orders from nQ signals
We have described two methods for obtaining the signals

SnQ(τ = 0, T, ωt , I0). Regardless of the method used for obtaining
them, we may use Eq. (2) to isolate the individual nonlinear orders.
We now demonstrate how to perform this extraction procedure.

We begin by repeating Eq. (2) here for convenience,

S(2n+1)
rQ (τ = 0, T, ωt) =

⎛
⎜
⎝

2n

n − r

⎞
⎟
⎠

S(2n+1)
nQ (τ = 0, T, ωt).

This equality allows for the extraction of the clean S(2n+1)
nQ ,

which we call S(2n+1), at τ = 0. As discussed in Sec. II A, for each
fifth-order diagram at the 2Q position, four diagrams corresponding
to a fifth-order contribution at the 1Q position can be constructed,
which is the n = 2, r = 1 case of Eq. (2). The fifth-order contribution
at the 1Q position can therefore be eliminated by subtracting four
times the 2Q from the 1Q signal. If seventh-order corrections are
negligible, the result is the clean third-order signal,

S(3)(T, ωt)I0 = S1Q(T, ωt , I0) − 4S2Q(T, ωt , I0), (13)

where we suppress the dependence on τ, which is always zero in this
method. Note that in previous work, we already discussed contami-
nation correction using higher-order signals in 2D spectroscopy.35

However, in that work, we had derived an incorrect factor of six
instead of the correct factor of four for the relation between the
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fifth-order signal at 2Q and the fifth-order signal at the 1Q position
because we had considered only time-ordered diagrams, whereas in
the present work, we take into account all diagrams including those
without time ordering between the two pump pulses.

The same principle can be applied if higher-order responses
are significant. The seventh-order signal contributes at the 1Q, 2Q,
and 3Q positions (Fig. 1). In order to correct for the seventh-order
contamination, we must find the ratio between the seventh-order
contribution at the 3Q position and the seventh-order contribution
at the 2Q position. We can use Eq. (2) by setting n = 3 and r = 2,
resulting in a ratio of six between the two contributions. If the ninth-
order responses are negligible, the clean fifth-order contribution to
the 2Q signal can be obtained by subtracting six times the 3Q sig-
nal from the 2Q signal. For obtaining a clean third-order signal, we
have to eliminate both the fifth order (by subtracting four times the
corrected 2Q data) and the seventh order [by subtracting 15 times
the 3Q signal, obtained from Eq. (2) with n = 3, r = 1]. Since the 3Q
signal is also used to correct the 2Q signal, it turns up twice in the
overall correction procedure: to eliminate the seventh-order con-
tribution from 1Q and to eliminate the seventh-order contribution
from 2Q. The overall correction procedure thus results in

S(3)(T, ωt)I0 = [S1Q(T, ωt , I0) − 15 S3Q(T, ωt , I0)]

−4 [S2Q(T, ωt , I0) − 6 S3Q(T, ωt , I0)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S(5)
(T,ωt)I2

0

= S1Q(T, ωt , I0) − 4 S2Q(T, ωt , I0) + 9 S3Q(T, ωt , I0)(14)

for a clean third-order signal.
We can proceed analogously to obtain similar ratios of double-

sided Feynman diagrams for all higher orders and generalize
the correction procedure accordingly. The correction factors can
be written as a matrix connecting the clean nonlinear signals
S(2n+1)

(T, ωt) with the measured nQ signals SnQ(T, ωt , I0),
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, (15)

where we find Eq. (14), exemplarily, in rows 1 and 2 and columns
1–3, of the matrix. Since the lowest-order contribution to an nQ sig-
nal has order 2n + 1, the matrix is upper triangular. Note that the
correction factors are the same regardless of whether time ordering
between the pump and probe pulses is fulfilled or the rotating-
wave approximation (RWA) holds, as we show in the supplementary
material (Sec. SIV). An important point is that the procedure cor-
rects up to a certain nonlinear order. For example, in Eq. (14), the 1Q
signal is corrected for fifth- and seventh-order contributions using
the 2Q and 3Q signals. However, if the 3Q signal is contaminated
by non-negligible ninth-order contributions, the correction using
only the 2Q and 3Q signal is not sufficient, and the 4Q signal has
to be taken into account. For any given pump intensity, there is a
high-order signal that is small enough to be neglected, and orders
lower than that must be corrected. In our recent publication, we used
an independent approach using this intensity dependence to derive
Eq. (15).68 In summary, Eq. (15) allows us to obtain N clean nonlin-
ear signals, given that we have first obtained N multi-quantum (nQ)
signals.

III. RESULTS AND DISCUSSION
A. Experiment

We now illustrate the general concept derived in Sec. II exem-
plarily by describing measurements and the associated analysis on
a squaraine oligomer (oSQB8) dissolved in toluene. The absorption
spectrum is shown in Fig. 3(a) (green) together with the laser spec-
tra of the pump (red shaded area) and probe pulses (black dashed
line). The oligomer is made from eight repeating units of the cisoid
indolenine squaraine monomer (SQB) [Fig. 3(b)]. A thorough analy-
sis of the fluorescence and absorption spectra on a series of squaraine
oligomers with varying lengths made out of SQB revealed that spec-
troscopic properties in toluene can be explained by a structurally
disordered linear chain.79 The linear structure in toluene results in
a J-type coupling and a red-shifted absorption maximum compared
to the monomer. In our measurements, we excited the blue part of
the main absorption peak.

Our experimental setup19,53 consists of a Ti:sapphire laser
amplifier (SpitfirePro, Spectra Physics, 1 kHz, 800 nm, 4 mJ, 35 fs)
whose output attenuated to about 1 mJ pulse energy was focused into
a hollow-core fiber (Ultrafast Innovations) filled with neon (∼1 bar).
The resulting broadband white light was compressed of a set of
chirped mirrors and then split into a pump beam and a probe beam
by a pair of wedges. The population time T was controlled by a
mechanical delay stage (M-IMS600LM, Newport) within the probe
beam. The pump beam was guided for further compression through
a GRISM compressor (Fastlite) and an acousto-optic programmable
dispersive filter (AOPDF) pulse shaper (Dazzler, Fastlite). For PP
measurements, the AOPDF was used to control the intensity of the
pump pulse. For 2D experiments, the AOPDF was used to create a
double pulse with variable delay τ. The pump and probe beams were
focused into the sample via two focusing mirrors, resulting in beam
sizes of 59 μm full width at half maximum (FWHM) for the main
axis of the probe (at an eccentricity of 0.75) and 335 μm FWHM for
the pump (eccentricity of 0.83). The pulse duration of a single pump
pulse was measured by pulse-shaper-assisted collinear frequency-
resolved optical gating (cFROG)80 and found to be 17 fs (FWHM of
the intensity). The pump pulse characterized by cFROG was used to
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FIG. 3. Characteristics of the measured squaraine oligomer oSQB8. (a) The absorption spectrum (green) in toluene shows an absorption maximum at ∼780 nm, which
corresponds to an excitonic structure with J-type coupling. The laser pump spectrum for 2D measurements (red shaded area) is located at the blue side of the absorption
maximum, while the probe spectrum (black dashed line) covers ∼700–900 nm. (b) The squaraine oligomer consists of eight SQB monomer subunits. From the absorption
spectrum, a structurally disordered linear chain structure can be deduced.

determine the pulse duration of the probe pulse in a second step by
cross-correlation FROG.80 The reconstructed duration of the probe
pulse was ∼50 fs (FWHM), slightly longer than the pump pulse due
to some remaining dispersion because the pulse shaper acted only
on the pump beam. To obtain the signal (in TA and in 2D), we used
a double-chopping scheme in which both beams were chopped with
different frequencies. In the pump beam, sequences of two consecu-
tive pulses were blocked and then transmitted; in the probe beam,
alternating pulses were blocked and transmitted. This resulted in
four combinations, all measured as powers of the probe beam: (1)
both beams blocked corresponding to the background only (IB), (2)
both beams open (IPu−Pr), (3) pump beam open and probe beam
blocked (IPu), and (4) vice versa (IPr). The transient absorption
signal as the change of the optical density was constructed by

ΔOD = −log10
IPu−Pr − IPu

IPr − IB
. (16)

To avoid bleaching, the sample was continuously pumped by
using a microannular gear pump (mzr-2942-cy, HNP Mikrosysteme
GmbH) through a quartz flow cell with a 200 μm beam path.

B. 2D spectroscopy
We begin with the isolation of nQ signals, starting with 2D

spectroscopy in this section. Carrying out the procedure derived in
Sec. II B requires scanning of the coherence time in small enough
steps to separate different nQ signals along the excitation axis in
the 2D spectrum. We want to demonstrate our correction proce-
dure at different excitation intensity regimes, i.e., where different
higher-order signals are contributing. Therefore, we measured 2D
spectroscopy at three excitation intensities and isolated the 1Q, 2Q,
and 3Q signal for each excitation intensity. In practice, we kept all
pulse parameters constant and varied the pulse energy, which is
proportional to intensity, using the pulse shaper. We refer to these
measurements by the pulse energy of the excitation pulses at tempo-
ral overlap (τ = 0). The probe pulse was always kept weak such that
it effectively interacted only once with the system.

The 2D spectrum at a population time of T = 220 fs, measured
with an excitation pulse energy of 220 nJ, is shown in Fig. 4(a).
The signal near the excitation frequency of ω0 (corresponding to
∼13000 cm−1) represents the 1Q signal (blue rectangle). It is dom-
inated by a negative signal, which is elongated along the detection
axis. At around twice the excitation frequency (2ω0), a positive 2Q

FIG. 4. Multi-quantum 2D spectra of squaraine oligomer oSQB8 measured at a
pulse energy of 220 nJ. (a) Three signals can be distinguished at one, two, and
three times the frequency of the pump pulse on the excitation frequency axis. (b)
Zoomed-in data of the regions marked by colored rectangles in (a) containing the
1Q (left), 2Q (middle), and 3Q signals (right). The sign of the signal alternates,
and the line shape gets broader along the excitation axis from 1Q to 2Q to 3Q.
Diagonals (black dashed lines) are drawn at νt = ντ for the 1Q signal, 2νt = ντ for
the 2Q signal, and 3νt = ντ for the 3Q signal.
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peak is visible (red rectangle), called “EEI2D signal” in previous
publications.35,36,54 Here, we adopt the “nQ” nomenclature to enable
generalization to arbitrary orders n and non-excitonic systems.

In Fig. 4(b), we show the individual regions of 1Q, 2Q, and
3Q regions with rescaled color bars such that we can clearly distin-
guish the three different nQ signals. Interestingly, for higher-order
signals (that we define as all nQ signals with n > 1), a pronounced

elongation along the excitation axis can be observed. All nQ signal
maxima are located slightly below their respective diagonals (νt = ντ
for 1Q, 2νt = ντ for 2Q, and 3νt = ντ for 3Q). The reason for the
peak position could be energy relaxation and stimulated emission
contributions, leading to a shift to smaller detection wavenum-
bers. The line shapes of the 2Q signal were investigated theoreti-
cally for molecular dimers and trimers59 and directly compared to

FIG. 5. Integrated (along ντ ) kinetics for the uncorrected 1Q (left column), 2Q (middle column), and 3Q (right column) signals. (a) Resulting effective TA maps. The pulse
energy was varied from 15 nJ (top row) to 120 nJ (middle row) to 220 nJ (bottom row). (b) Kinetics by taking the average (a) over νt and normalizing to the average between
200 and 300 fs. The 1Q signal is shown for pulse energies of 15 nJ (blue dotted line) and 220 nJ (blue solid line), the 2Q signal for 120 nJ (red dashed line) and 220 nJ (red
solid line), and the 3Q signal for 220 nJ (yellow solid line).
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experimental results on the example of a squaraine trimer.55 We
leave an analysis of nQ line shapes in the present oligomer to future
work and instead concentrate on the signals integrated over ντ
for each nQ region shown in Fig. 4(b) (1Q: 11 258–15 010 cm−1,
2Q: 24 183–27 936 cm−1, and 3Q: 37 109–40 862 cm−1).

We show in Fig. 5(a) the integrated 2D signals of the respec-
tive regions for three different pulse energies. The ντ integration,
while keeping the νt coordinate, leads to effective transient absorp-
tion maps. We adjusted small differences of the temporal overlap
between pump and probe pulses (T = 0, τ = 0) between the measure-
ments by shifting the population time axis using the coherent artifact
in the 1Q signal, as described in the supplementary material (Sec.
SV). This shift only affected the population time axis and not the
coherence time. We show the 1Q, 2Q, and 3Q signals (from left to
right) for pulse energies of 15, 120, and 220 nJ (from top to bot-
tom). The 1Q signal at all pulse energies is dominantly negative,
which corresponds to ground-state bleach and stimulated emission
in our sign convention. Now, we focus on higher-order signals. For
the lowest pulse energy (15 nJ), only a 1Q signal is visible. At the next
higher pulse energy (120 nJ), a 2Q signal can be clearly seen, and the
3Q signal just begins to emerge from the noise floor. At the highest
pulse energy (220 nJ), all three signals (1Q, 2Q, and 3Q) are clearly
visible.

In Fig. 5(b), we show the average (along νt over the marked
regions in the maps) transient signals for 1Q, 2Q, and 3Q. These
transients are normalized to the average signal from 200 to 300 fs
to facilitate a direct comparison of nQ kinetics. Thus, the tran-
sients are all positive for long delay times and no longer reflect the
sign alternation from Fig. 5(a). The 1Q signals at 220 nJ [Fig. 5(b),
blue solid line] and 15 nJ (blue dotted line) both rise at around
T = 0. The differences between the two measurements are visible
in the first 100 fs after T = 0. During the first 100 fs, the 1Q signal at
220 nJ rises to a maximum above 1.0 and then slightly decreases.
The 1Q signal at 15 nJ first initially agrees with the signal at 220
nJ but rounds off without building up a maximum. The change in
the dynamics between the measurements at different pulse ener-
gies is a clear indicator that at high pulse energies, higher-order
contributions contaminate the 1Q signal.

With the nQ analysis described in the present work, contami-
nation of 1Q is trivial to confirm because we can directly measure
the higher-order signals, i.e., at 2Q [Fig. 5(b), red solid line] and
3Q positions [Fig. 5(b), yellow solid line] at 220 nJ. These higher-
order signals correspond to negations of the lower-order signals
and SE and ESA from higher-excited states, such as biexciton states.
While the third-order signal reports on single-exciton dynamics, the
fifth-order signal adds the dynamics of exciton–exciton annihila-
tion, the seventh-order signal adds the annihilation of three excitons,
and analogously for higher-order signals. Note that each higher-
order signal also contains reductions of lower-order signals, just as
the ground-state bleach at third order is a reduction of the linear
absorption. For example, the fifth-order signal includes the dynam-
ics of states that begin with two excitons and single- and zero-exciton
dynamics.

As previously discussed, in extended systems, higher-order sig-
nals are dominated by the signal belonging to the maximum number
of excitons that can be probed in the given order of nonlinearity.53,68

The 2Q signal at 220 nJ rises more slowly than the 1Q signal at
220 nJ during the first 100 fs although the difference is small. The

2Q signal rises slower since at short time, the SE from the two-
exciton states opposes the contributions from ground state and
single-exciton states.54 As the excitons annihilate, the contribution
of the two-exciton states to the overall signal becomes weaker, allow-
ing the total signal to grow in magnitude. In order to annihilate, the
excitons have to arrive in close proximity to each other, and there-
fore, a period of exciton diffusion takes place, which is reflected by
a rise of the 2Q signal. Compared to larger excitonic systems that
were investigated previously, such as polymers and aggregates,35,53

the rise of the 2Q signal is faster here since the studied oligomers
are smaller, and therefore, the excitons do not need to propagate
for large distances before annihilation. For a better comparison,
we show the 1Q and 2Q signals at 220 nJ on top of each other in
Fig. S6 of the supplementary material (Sec. SVI). At an excitation
pulse energy of 120 nJ, the 2Q signal [Fig. 5(b), red dashed line]
rises more slowly than for 220 nJ (red solid line). The slower 2Q
rise for lower pulse energies is an analogous effect as that observed
for 1Q, i.e., higher-order signals contaminate the signal. In this case,
at 220 nJ, the seventh-order signal appears at the 2Q position. We
can observe the seventh-order signal directly at the 3Q position
[Fig. 5(b), yellow solid line]. A comparison of the measured dynam-
ics of the 3Q signal with the 1Q and 2Q signals is difficult because
of the low signal-to-noise ratio. While the 2Q signal is dominated by
the dynamics of biexcitons, the 3Q signal additionally contains the
dynamics of triexcitons, i.e., the annihilation of three excitons.

C. PP spectroscopy
As discussed in Sec. II C, nQ signals can also be extracted from

PP experiments using a systematic variation of the excitation inten-
sity. We show in Fig. 6(a) the 1Q (left), 2Q (middle), and 3Q signals
(right) measured via PP. In order to obtain the 1Q, 2Q, and 3Q sig-
nals, a set of three different pulse energies is needed as discussed
in Sec. II C. We constructed three different sets of 1Q, 2Q, and 3Q
signals using Eq. (11), which are labeled by the highest power in
each sequence: 200 nJ (constructed from measurements at 200, 150,
and 50 nJ), 50 nJ (constructed from measurements at 50, 37.5, and
12.5 nJ), and 12.5 nJ (constructed from measurements at 12.5, 9.375,
and 3.125 nJ).

We show the extracted 1Q, 2Q, and 3Q signals for the three dif-
ferent values of 4I0 in the supplementary material (Sec. SVII). Let us
now focus on the transients arising after averaging over the marked
regions in Fig. 6(a) and normalization to the average signal between
200 and 300 fs [Fig. 6(b)]. The difference in the dynamics for the
measurements at different excitation powers is again mostly visible
in the population times from T = 0 to T = 100 fs. For the 1Q signal
at 200 nJ (4I0), the signal rises rapidly at around time zero, reaches
a maximum above 1.0, and then decays [Fig. 6(b), blue solid line].
The 1Q signal of 4I0 = 12.5 nJ (blue dotted line) does not reach a
value above 1.0 and has a more rounded shape. The differences of
the dynamics between these two curves are again a clear sign that at
200 nJ, the 1Q signal is contaminated by higher-order contributions.
The change in the dynamics is also visible for the 2Q signal at 200 nJ
(red solid line) compared to 50 nJ (red dashed line), which can be
explained by the seventh-order contribution, clearly visible as a 3Q
signal (yellow solid line). The 2Q signal at 200 nJ [Fig. 6(b), red solid
line] rises more slowly than 1Q, which is better visible by a direct
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FIG. 6. Uncorrected multi-quantum PP signals of squaraine oligomer oSQB8. (a) 1Q (left), 2Q (middle), and 3Q (right) PP maps extracted from a sequence of measurements
where the highest pulse energy (4I0) of three different sets was 200, 50, and 12.5 nJ, respectively. (b) Averaged [over the respective regions color-shaded in the maps in
(a)] 1Q (left, blue line), 2Q (middle, red line), and 3Q (right, yellow line) PP transients. The 1Q signal was extracted from a set of measurements with 4I0 of 200 nJ (blue
solid line) and 4I0 of 12.5 nJ (blue dashed line). The 2Q signal is shown for measurement sets with 4I0 of 200 nJ (red solid line) and 4I0 of 50 nJ (red dashed line). The 3Q
signal is shown for measurements with 4I0 of 200 nJ (yellow solid line). For comparison, we also show the nQ signals from the 2D measurement (black solid 1Q signal, dark
gray solid 2Q signal, and light gray solid 3Q signal) for 220 nJ energy.

comparison of the traces, as shown in the supplementary material
(Sec. SVIII).

The difference for the measurements between low and high
powers in PP spectroscopy is similar to the differences between
low and high excitation powers in 2D spectroscopy. The 1Q sig-
nal in PP spectroscopy at low power (4I0 = 12.5 nJ) has a similar
roundish shape as the 1Q signal at lower powers in 2D measure-
ments [Fig. 5(b), blue dashed line]. In addition, the 2Q signal for
PP and 2D spectroscopies (dark gray solid line) has similar dynam-
ics for T > 0. For T near and less than zero, nQ signals from PP
and 2D methods do not agree, with the most obvious differences in
the 3Q signal. The problem arises in 2D signals, where the nQ sig-
nals cease to be well-separated from each other along the ωτ axis.
The windowed integration along ωτ then does not capture the full
nQ signal and therefore does not well reproduce the τ = 0 contribu-
tion to the signals. We illustrate this problem in the supplementary
material Sec. SXIII, showing that it occurs when T becomes smaller
than the pulse duration. The PP signals do not rely on the windowed
ωτ integration, so those signals are more accurate in the small- and
negative-T regions.

In summary, the higher-order signals in 2D and PP spectro-
scopies reveal similar dynamics except for the population times close
to T = 0. The contamination of higher-order signals in both methods

is visible as a change in the dynamics of the 1Q signal by 2Q and 3Q
contributions and of the 2Q signal by 3Q contributions, i.e., faster
rises in each signal are seen for higher excitation pulse energy.

D. Extraction of contamination-free third-order signal
We now focus on the correction of the 1Q signal with respect to

higher-order contributions using both 2D and PP data. In Fig. 7, we
show 1Q transients from 2D (a) and PP (b) measurements, averaged
over νt (from 12 200 to 12 800 cm−1). In the case of 2D spectroscopy,
the measurements of 220 and 15 nJ are already shown in Fig. 5(b).
The transients extracted from a set of three PP measurements with
4I0 of 200 nJ are shown in Fig. 6(b). For the high-power measure-
ment (220 nJ for 2D, 4I0 of 200 nJ for PP spectroscopy), the 1Q signal
is contaminated by higher-order contributions, i.e., third-, fifth-, and
seventh-order signals are mixed together. The spectrally resolved
maps are shown in the supplementary material (Sec. SIX).

As a reference for 2D measurements, we use the signal mea-
sured at Iref,2D = 15 nJ. For PP spectroscopy, we use the signal
measured at Iref,PP = 3.125 nJ, which is the lowest intensity-cycling
step for the 12.5 nJ set. We call these two signals “reference signals.”
The transients are scaled using two factors. First, each signal is
divided by the absolute value of the transient (averaged from T =
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FIG. 7. Averaged (along νt ) and normalized (see the text) 1Q transients from (a) 2D and (b) PP measurements with the respective corrections for higher-order contaminations.
The medium power (dark blue line) is corrected using the 2Q signal only, while the highest power (purple line) is corrected using the 2Q and 3Q signals. Solid lines correspond
to uncorrected signals at the powers given in the legend, blue dashed lines correspond to correction of the medium-power measurement using the 2Q signal, and purple
dotted lines correspond to the highest-power measurements corrected using the 2Q and 3Q signals.

200 to T = 300 fs) of the reference signal. In addition, as shown in
Eq. (11), the extraction procedure of the nQ signals from the PP data
yields the quantities SnQ(T, ωt , I0), which is to say that the signals
are extracted at a particular synthetic power I0, even if the intensity-
cycling procedure does not happen to include I0. This means that
to leading order, the SnQ signals scale as In

0 . Similarly, according
to Eq. (15), the individual orders that are obtained are scaled as
S(2n+1)

(T, ωt)In
0 . Therefore, all 1Q and third-order signals are also

normalized by the ratio of I0/Iref. Therefore, the 1Q signal extracted
from the set with 4I0 corresponding to 200 nJ, 3I0 corresponding
to 150 nJ, and I0 corresponding to 50 nJ is divided by the ratio
(50/3.125). Analogously, the 1Q signal extracted from measurement
of 50 nJ, 37.5, and 12.5 nJ is divided by (12.5/3.125). As seen in
Fig. S10 of the supplementary material, the raw PP data at 3.125 nJ
are practically indistinguishable from the corrected 1Q signal con-
structed from the full set of three intensity cycling steps, giving us
confidence that the original PP data taken at 3.125 nJ can serve as a
reasonable reference for a pure third-order signal. If the 1Q signal
dominated by a negative signal scaled linearly with excitation inten-
sity, i.e., if no higher-order contaminations contributed at higher
pulse energies, the minimum signal of each trace would be at −1.0
with this normalization procedure because we divide the negative
signal by the absolute of the averaged reference signal and the ratio
of powers, which are both positive. Saturation of the signal for higher
excitation intensity leads to lower signal amplitude and, therefore, a
change of the signal from −1.0 to, for example, −0.8.

In Fig. 7, uncorrected transients are shown as solid lines. For
the lowest-power measurements in the 2D experiment, no higher-
order signals could be detected. Therefore, this signal should be free
from contamination from higher orders [Fig. 7(a), light blue line].
For higher pulse energies, such as 120 nJ [Fig. 7(a), dark blue solid
line] and 220 nJ [Fig. 7(a), purple solid line], the signal saturates,
which leads to a signal of about −0.6 for the measurement at 120 nJ
and −0.4 for the measurement at 220 nJ. As stated above, the change

of the signal dynamics by higher-order contributions is small in this
particular sample, but changes can be dramatic in the general case of
other excitonic systems.30,32,71 We therefore use the signal strength
as an additional indicator for whether a clean third-order signal can
be recovered.

We now apply the correction procedure, Eq. (13), from Sec. II D
to the measurements of 120 nJ by subtracting four times the 2Q sig-
nal from the 1Q signal, resulting in a clean third-order signal, which
is shown in Fig. 7(a) (dark blue dashed line). For the measurement
at 220 nJ, we use both the 2Q and 3Q signals for correction accord-
ing to Eq. (14) and show the result in Fig. 7(a) (purple dotted line).
The corrected curves show similar dynamics as the low-power mea-
surement, and the scaling is also correct, i.e., their minimum signals
are around −1.0. At close inspection, it can be seen that the corrected
curves are both slightly below the reference measurements. This sug-
gests that there is a small contribution of fifth-order contamination
present even for the lowest-power measurement. There are larger
discrepancies at negative T, as discussed in Sec. III C.

For the PP experiments shown in Fig. 7(b), the situation is sim-
ilar to 2D experiments. Since the pulse energies are slightly lower
in PP measurements than in 2D measurements, the saturation for
the power of 50 nJ [Fig. 7(b), dark blue solid line] is not as strong
as in the 2D measurement. The change in the dynamics is also
not as clear for the power of 50 nJ [Fig. 7(b), dark blue solid line]
as for 2D spectroscopy. However, for the highest power of 200 nJ
[Fig. 7(b), purple solid line], the signal starts to lose its roundish
shape. We compare the signal to the annihilation-free PP measure-
ment at 3.125 nJ [Fig. 7(b), orange line]. The corrections of the 50 nJ
data up to 2Q (dark blue dashed) and the 200 nJ data up to 3Q (pur-
ple dotted) eliminate higher-order contaminations. We show that
no seventh-order contamination is present in the 50 nJ measure-
ment in the supplementary material (Sec. SXI). Both of the corrected
curves and the low-power measurement in Fig. 7(b) agree well, and
only at close inspection, a slight systematic deviation can be noticed.
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For the highest power, the corrected curve [Fig. 6(b), purple dot-
ted line] is slightly above the lowest-power measurement. This is a
hint that at 200 nJ, the 3Q signal is contaminated by a (small) ninth-
order contribution that we did not extract with our measurement
scheme but could be obtained using one more measurement step
in the intensity-cycling procedure. In the 2D experiment, the signal
at highest pulse energy seems to be corrected reasonably well using
the 2Q and 3Q signals and does not require any 4Q corrections.
Slightly different beam sizes or a variation in the spatial overlap
between pump and probe beams between the 2D and PP measure-
ments might also be reasons for the small deviations between the two
experiments.

In addition to the transients of Fig. 7, we show in Fig. 8
cuts along νt for the 1Q signal with and without correction for
higher-order contamination at two population times, 40 and 300 fs.
The transient spectra for T = 0 fs are shown in Sec. SXII of the
supplementary material. For a population time of 300 fs, the 2D nQ

signals are well localized in ωτ , so the windowed integration pro-
ceeds without issue. However, at a population time of 40 fs, the 2D
nQ signals are not well localized in ωτ , and thus, the windowed
integration procedure does not fully capture the τ = 0 component
of the nQ signals, which causes the discrepancies between the
15 nJ measurement and the corrected measurements, seen in the top
panel of Fig. 8(a), as well as the visual differences between 2D and
PP techniques. We directly compare the data from 2D spectroscopy
[Fig. 8(a)] and from PP spectroscopy [Fig. 8(b)]. The signals are
scaled in a similar way as in Fig. 7: First, the signal for each specific
T step is divided by the absolute value of the minimum of the refer-
ence signal, and then, each signal is divided by the ratio between the
pulse energy of the measurement and the reference pulse energy.

Both methods shown in Fig. 8 show signs of saturation of the
1Q signal as the pump power increases, as previously discussed.
Figure 8(a) also shows further evidence that the reference 2D mea-
surement taken at 15 nJ includes some fifth-order contamination

FIG. 8. Transient spectra. The 1Q signal is shown as a function of νt for the two population times of 40 (top) and 300 fs (bottom) from (a) 2D and (b) PP spectroscopies. The
measurements with pulse energies of 120 and 50 nJ are corrected using the 2Q signal only, while the measurements with 220 and 200 nJ are corrected using the 2Q and
3Q signals. The uncorrected signals with pulse energies of 120 and 50 nJ are shown as blue solids, while the corresponding corrected signals are shown as blue dashed
lines. The uncorrected signals corresponding to 220 and 200 nJ are shown as purple solids, while the corrected signals are shown as purple dotted lines. As references,
i.e., uncontaminated low-power signals, we show measurements at 15 nJ (light blue solid line) and 3.125 nJ (orange solid line). For the 2D measurement at 120 nJ, we
evaluated the average of the signal between 35 and 55 fs (top panels) and the average between 295 and 315 fs (bottom panels) since the population time axis of this
measurement was shifted by 15 fs, and therefore, no spectral measurement for time delays exactly at 40 and 300 fs was taken.
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since the corrected curves are slightly below −1.0. For the larger
population time of T = 300 fs, the spectra from both methods are
similar. For both population times for PP (and for T > 40 fs for 2D),
the corrections rebuild the shape of the reference signal. We empha-
size that our procedure allows one to judge very easily the excitation
regime, i.e., which higher-order contaminations are present. Besides
the correction, one also obtains higher-order contributions that
contain additional information about the interaction of multiple
(quasi)particles and higher-excited states.

IV. CONCLUSION
In this paper, we demonstrated a general procedure that can

be applied in coherent two-dimensional (2D) spectroscopy and in
pump–probe (PP) spectroscopy to obtain clean nonlinear signals of
a particular perturbative order. The first step in both methods is
to isolate multi-quantum (nQ) signals. In 2D spectroscopy, differ-
ent signals can be isolated by their position along the excitation-
frequency axis. In PP spectroscopy, nQ signals are isolated by an
intensity-cycling procedure where linear combinations of PP sig-
nals measured at specified excitation intensities produce various
nQ signals. General procedures for these linear combinations were
derived that are also applicable to higher orders. The second step
involves taking appropriate linear combinations of nQ signals in
order to isolate the individual nonlinear orders. We derived the ana-
lytical connection between the nQ signals by studying the structure
of the Feynman diagrams that contribute to each nonlinear order
of each nQ signal and provided visual motivation for the relation-
ship by inspecting the fifth-order diagrams that contribute to the
1Q and 2Q signals. Based on the knowledge of how much each
nonlinear order contributes to different nQ signals, we developed
a correction protocol using the isolated nQ signals in PP and 2D
spectroscopies. The clean nonlinear orders were extracted by adding
nQ signals together with specific correction factors. This result is
remarkable because the correction procedure is independent of the
explicit system properties.

We experimentally confirmed our theoretical analysis by iso-
lating the 1Q, 2Q, and 3Q signals of squaraine oligomers in 2D
spectroscopy and demonstrated that these signals can be isolated in
a PP experiment as well. We showed that at high excitation pulse
energies, fifth- and seventh-order contributions contaminate the 1Q
signal, leading to a change in observed dynamics. In our example,
these contaminations arose from multi-exciton processes, such as
exciton–exciton annihilation. Additionally, a saturation of the signal
with higher pulse energies was observed. Following a full analysis of
all contributing Feynman diagrams from all relevant higher orders,
the measured 2Q and 3Q signals were utilized to correct the 1Q mea-
surement for contaminations from higher orders, resulting in a clean
third-order signal.

The experimental nQ results and their corrections were found
to be equivalent for 2D and PP spectroscopies, apart from some dif-
ferences at negative and small positive population times that are
related to streaking of the 2D data along the excitation frequency
axis. Using the correction procedure, an annihilation-free third-
order signal was obtained even for high pulse energy. We confirmed
our approach by comparing the corrected 1Q (i.e., third-order) sig-
nals with measurements at low pulse energies, i.e., in the absence

of higher-order contamination, and found the dynamics to be the
same.

Our technique poses a simple solution to the longstanding
problem to avoid annihilation in ultrafast spectroscopic experi-
ments. The extraction of annihilation-free signals is especially inter-
esting for the investigation of natural light-harvesting complexes or
other “chromophore-crowded” systems where annihilation is chal-
lenging to avoid. While in this publication we focused on one specific
case of higher-order signals, namely, multi-exciton annihilation, the
problem of uncontrolled mixing of higher-order signals is more gen-
eral, and our approach can be applied to other systems where the
higher-order effects report on phenomena other than annihilation.
In any system, this procedure extracts clean third-order signals.

Furthermore, one gains simple access to higher-order signals,
allowing us to investigate multi-particle interactions and probe their
dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for the double-sided Feyn-
man diagrams of the third-order 1Q signal, double-sided Feynman
diagrams of the fifth-order 1Q and 2Q signals, analytic proof of
the correction procedure, ratio of double-sided Feynman diagrams,
shifting of the population time, 1Q and 2Q signals obtained from
two-dimensional spectroscopy, pump–probe signals for different
pulse energies, comparison of pump–probe signals, corrected 1Q
signals for different pulse energies, corrections of the pump–probe
signal at a pulse energy of 12.5 nJ, corrections of the pump–probe
signal at a pulse energy of 50 nJ, correction at T = 0 fs, and separation
of overlap diagrams along the ωτ axis.
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75T. Mančal, A. V. Pisliakov, and G. R. Fleming, J. Chem. Phys. 124, 234504
(2006).
76L. Chen, E. Palacino-González, M. F. Gelin, and W. Domcke, J. Chem. Phys.
147, 234104 (2017).
77H.-S. Tan, J. Chem. Phys. 129, 124501 (2008).
78G. B. Wright, M. Javed, H. Montanelli, and L. N. Trefethen, SIAM J. Sci.
Comput. 37, C554 (2015).
79A. Turkin, P. Malý, and C. Lambert, Phys. Chem. Chem. Phys. 23, 18393 (2021).
80R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort
Laser Pulses, 1st ed. (Springer, New York, 2002).

J. Chem. Phys. 158, 234201 (2023); doi: 10.1063/5.0139090 158, 234201-18

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0139090/18002409/234201_1_5.0139090.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.chemphys.2019.110433
https://doi.org/10.1038/s42005-022-00822-5
https://doi.org/10.1126/science.1083433
https://doi.org/10.1063/1.2800560
https://doi.org/10.1126/science.1209206
https://doi.org/10.1364/oe.25.003259
https://doi.org/10.1364/JOSAB.34.000430
https://doi.org/10.1063/5.0024105
https://doi.org/10.1021/jp5055809
https://doi.org/10.1021/acs.jpclett.0c01669
https://doi.org/10.1021/jp9925738
https://doi.org/10.1063/1.469586
https://doi.org/10.1063/1.2200704
https://doi.org/10.1063/1.5004763
https://doi.org/10.1063/1.2978381
https://doi.org/10.1137/141001007
https://doi.org/10.1137/141001007
https://doi.org/10.1039/d1cp02136b

