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ABSTRACT: Near-field radiative heat transfer (NFRHT) measure-
ments often rely on custom microdevices that can be difficult to
reproduce after their original demonstration. Here we study NFRHT
using plain silicon nitride (SiN) membrane nanomechanical
resonators�a widely available substrate used in applications such
as electron microscopy and optomechanics�and on which other
materials can easily be deposited. We report measurements down to a
minimal distance of 180 nm between a large radius of curvature (15.5
mm) glass radiator and a SiN membrane resonator. At such deep sub-
wavelength distance, heat transfer is dominated by surface polariton
resonances over a (0.25 mm)2 effective area, which is comparable to
plane−plane experiments employing custom microfabricated devices. We also discuss how measurements using nanomechanical
resonators create opportunities for simultaneously measuring near-field radiative heat transfer and thermal radiation forces (e.g.,
thermal corrections to Casimir forces).
KEYWORDS: Near-field radiation, nanomechanical resonators, thermal radiation, surface polariton

Near-field radiative heat transfer (NFRHT) has demon-
strated great theoretical potential1−7 for applications

such as energy conversion8−12 and heat transfer control.5−7,13

NFRHT consists of evanescent radiative thermal coupling
occurring between two bodies at sub-wavelength distances.
This evanescent coupling enables radiative heat transfer
exceeding conventional laws of thermal radiation by orders
of magnitude14−16 while being concentrated over a narrow
spectral bandwidth.17−20

Despite this large amount of promising theoretical work,
technical challenges of precision alignment at high temper-
atures often limit experimental progress on NFRHT. Several
approaches have been reported to mitigate or overcome
experimental difficulties. While some used nanotips13,20−24 or
microspheres25−31 to eliminate the need to maintain
parallelism between the coupled surfaces, others relied on
more customized designs to study NFRHT between parallel
surfaces using active parallelism control32−40 or a custom
nanofabricated static device.41−47 The development of static
devices is key for achieving practical application of NFRHT.
However, their custom-fabricated nature makes it difficult to
integrate various new materials4,48−53 to experimentally study
and confirm existing theoretical work on NFRHT. Since the
majority of reported NFRHT experiments also employ custom
nanodevices,13,23−26,32−35,41−47 experimental capabilities for
investigating new materials for NFRHT remains limited. There
is consequently a substantial imbalance between a large body

of theoretically investigated phenomena and relatively modest
experimental capabilities in the field of NFRHT research.
In an effort to address this imbalance, we previously

proposed an alternative54 where the sensing element�a
silicon nitride (SiN) membrane nanomechanical resonator�
is a commonly available55,56 substrate material onto which
other materials are routinely deposited, for example, in
transmission electron microscopy. The high mechanical quality
factor of these resonators and their high temperature sensitivity
notably enabled the demonstration of a temperature resolution
(1.2 × 10−6 K) unprecedented in the context of NFRHT
measurements.54 However, we did not achieve NFRHT in the
deep sub-wavelength regime�where the thermal radiative heat
transfer is dominated by surface polariton (SP) resonances�
due to limited flexibility of our preliminary alignment platform
(i.e., one-axis alignment, 25 nm step size, open-loop control).
Other than potentially allowing material characterization,
resonator-based sensing could offer a unique opportunity for
measuring thermal radiation forces occurring in the context of
near-field radiative heat transfer.57,58 SiN resonators already
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allow, within the framework of optomechanics, strong coupling
between radiation forces and mechanical excitation.59 Like-
wise, SiN-based devices have been used to measure Casimir
forces before60 but not its out-of-equilibrium thermal
contribution.58

In this work, we present SiN membrane resonators as a
platform for measuring NFRHT in the deep sub-wavelength
regime and quantify their performance limits using a custom-
built 5-axis positioning system (see Figure 1a). Our positioning

system enables the alignment of two surfaces in the y, z, θ, and
ϕ direction, as shown in Figure 1b. The separation (x)
between the two surfaces is controlled by a closed-loop hybrid
linear stage (Smaract DLS-5252) that combines the advantages
of long travel range (30 mm) stick−slip positioners and high-
resolution piezorescanners, enabling a resolution of 1 nm over
a 35 μm slip-free range. The y and z positions of the membrane
can be modified using open-loop inertia drives (New Focus
Picomotor) with 25 nm per step resolution. The θ and ϕ
alignment of our platform is controlled by closed-loop stick−
slip stages (Smaract SGO-60.5 and SGO-77.5), with 2 μ°
resolution.

Other than the 5-axis positioning system, our platform relies
on relatively simple components that are commercially
available. The hot surface of our system is a BK7 glass lens
(see Figure 1a) attached to a metal ceramic heater. The large
radius of curvature of the glass radiator (15.5 mm), relative to
previous probe-tip experiments,13,20−31 allows a large effective
near-field heat transfer area (defined later in discussion related
to Figure 4c) that is comparable to our membrane size and to
previous microscale plate−plate experiments.10,34,35,47,61−63

The metal ceramic heater and spherical radiator are mounted
on a custom-machined Invar plate, which, due to its low
thermal conductivity and low thermal expansion coefficient
compared to other metals, minimizes required heating power
and mechanical deformation. The use of a spherical radiator
eliminates the need for the θ and ϕ alignment axes in the
current experiment, although their use is possible in future
plane−plane experiments.
To measure the near-field radiation signal, we rely on a low-

stress SiN membrane (built-in stress ∼60 MPa, inferred from
the mechanical resonance eigenfrequencies) with nominal
dimensions of 1.7 mm in side length and tSiN = 100 nm
thickness. The SiN membrane used in this platform was
fabricated in-house,64 but comparable devices are available
commercially.55,56 The temperature of the membrane is
inferred in real time through an optical interferometer54,65

that measures shifts of the membrane mechanical resonance
frequency due to thermally induced stress relaxation (i.e.,
material expansion).66,67 The membrane resonance frequency
is tracked by phase locking (PLL) the internal oscillator of a
lock-in amplifier (Zurich Instrument MFLI) to the membrane
eigenfrequency.68 The lock-in oscillator signal (set to an
amplitude of 80 mV) is sent to a piece of piezoelectric ceramic
(Thorlabs shear piezoelectric chip, PN:PL5FBP3) that
actuates the membrane at its resonance frequency by acoustic
coupling through the membrane-chip mount. The silicon
frame of the membrane is mounted on a low carbon steel
support (see Figure 1b) using 4 magnets, enabling good
thermal contact for maintaining the silicon frame at room
temperature, while limiting the mechanical damping compared
to adhesive mounting. To suppress fluidic damping and
convective heat transfer, the system is placed in a custom-
designed high-vacuum chamber operating at a typical pressure
of 2 × 10−6 Torr.
We predict the NFRHT signal between the radiator and the

membrane using a model�discussed in greater detail in
Supporting Information Section S.1 and ref 54�that combines
the heat diffusion equation inside the membrane (eq S13),69

multilayer NFRHT calculations,70,71 and the mechanical effects
of nonuniform stress in the resonator obtained by solving the
motion equation (eq S15).72 Far-field radiative heat transfer
between the back side of the membrane and the surrounding is
computed using conventional radiative heat transfer for small
objects with large surroundings.73 Far-field radiative heat
transfer between the front side of the membrane and the
radiator is calculated using the conventional far-field thermal
radiation formalism73 including geometrical view factors. In the
near-field, we account for the curvature of the glass radiator
using the proximity approximation (also known as the
Derjaguin approximation74) shown in eq S1. The permittivity
of the glass radiator is taken from ref 75, and that of SiN is
taken from ref 76.
Using this model, we compute a relative frequency

sensitivity (Δf/f 0) of the membrane to temperature (and

Figure 1. (a) NFRHT measurement apparatus inside the vacuum
chamber. (b) Render of the NFRHT measurement platform showing
both surfaces and the axes of motion used for the positioning. The
glass radiator is mounted onto a metal ceramic heater, which is itself
mounted on an Invar plate that minimizes required heating power and
mechanical deformation. Silver paste is used as a conductive adhesive,
which also helps dissipate any spurious electrostatic charges in the
glass radiator. The SiN membrane resonator is mounted on a low
carbon steel plate using 4 magnets, providing thermal grounding while
limiting mechanical damping.
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absorbed radiation) of −7400 ± 900 ppm/K (−710 ± 90
ppm/μW), under far-field radiation. With a fundamental
eigenmode frequency of ∼58.5 kHz for our current membrane,
the absolute frequency sensitivity is −433 ± 53 Hz/K (−41 ±
5 Hz/μW). In the near-field, these numbers change slightly
due to a different temperature spatial distribution in the
membrane. For example, at 200 nm near-field distance, the
sensitivity is evaluated at −449 ± 55 Hz/K (−45 ± 5.5 Hz/
μW) for our radiator geometry. The uncertainties result from
the uncertainties in the material constants of SiN (α = 2.2 ±
0.1 × 10−6 K−1,77−79 ν = 0.27 ± 0.03,77,79,80 E = 300 ± 30
GPa,77−81 and ρ = 3100 ± 100 kg/m377,79,81), for which values
are not reported with more than two significant figures. Here α
is the coefficient of thermal expansion, ν is the Poisson ratio, E
is the Young modulus, and ρ is the density.
In the current geometry, mechanical frequency shifts due to

Casimir forces are predicted to be much smaller than those due
to NFRHT. The Casimir force (Fcas) and spring constant (kcas
= ∂Fcas/∂x) are computed in Supporting Information Section
S.2 using the model in ref 58. At a typical separation achieved
in this work (∼200 nm), the estimated shift (Δfcas) of

resonance frequency ( f 0) due to Casimir forces is
f

f
cas

0
k
m f8

cas
2

eff 0
2 20 ppm. In comparison, typical temperature-induced

frequency shifts (see Figure 2c) are on the order of 1300 ppm.
We therefore neglect Casimir forces in the current work.
However, we note that shifts on the order of 20 ppm can
typically be resolved by our SiN membrane sensors, which
have demonstrated stability smaller than 0.01 ppm in ref 82. If
we can distinguish the contributions to frequency shifts due to
Casimir and to NFRHT, our approach could provide a unique
opportunity for measuring the never-demonstrated corrections
to Casimir forces out of thermal equilibrium.58

During the experiment, the proportional, integral, and
derivative (PID) parameters of our closed-loop x-axis position-
ing system (see Figure 1b) are set to an overdamped
mechanical response, preventing overshoot and oscillations of
the positioner. This slow overdamped response also enables
sampling of multiple temperature readings during displacement
between two set points. During a typical τpositioner ∼ 2 s
displacement between two set points, as shown in Figure 2a,
the membrane temperature is sampled 3350 times, yielding a
temperature sampling every ∼0.1 nm, even though the distance
between the set points is 100 nm. We consider that the
membrane remains in quasi-steady-state during these displace-
ments since its characteristic thermal response time (τth ≈
0.066 s83) is much smaller than the positioner response time
(τpositioner ∼ 2 s). For even finer approaches, we use the same
procedure but in 10 nm steps instead of 100 nm. These finer
steps are typically used at smaller separation (≲3 μm) to
prevent accidental contact.
Transverse alignment (i.e., in YZ) of the apex of the glass

radiator with the center of the membrane is critical for
maximizing the membrane response to near-field radiation.
Misalignment was the main limiting factor in our original 1-axis
positioner concept demonstration,54 but it is now no longer an
issue with our 5-axis alignment platform. As the apex of the
glass radiator is misaligned from the membrane center
position, it becomes increasingly coupled to the silicon
frame, thus, greatly reducing the near-field signal measured
by the membrane. We rely on this effect to align the glass
radiator apex with the membrane center. While actively

recording the membrane frequency, we moved the glass
radiator forward until the membrane mechanical resonance is
lost. We then retracted the glass radiator by 15 μm. Afterward,
we use our Y (and Z) stage to adjust the horizontal (and
vertical) positions of the hot surface by 250 μm and repeat the
approach procedure while measuring the near-field signal. We
repeat this procedure until the near-field radiation signal�i.e.,
the frequency shift before loss of resonance�is maximized
(see Figure 2b). Once this procedure is completed, the apex of
the glass radiator is aligned with the center of the membrane
with an estimated accuracy of ±125 μm. With such
uncertainty, our model54 predicts negligible near-field signal
degradation (less than 1% attenuation of the temperature
signal compared to perfect alignment). We note that, due to
the low temperature difference between the two surfaces (ΔT
= 4.1 K for the measurement in Figure 2b), measuring the

Figure 2. (a) Overdamped displacement response of the hybrid
positioner as a function of time (in green). The frequency data (in
blue) illustrates how we sample approximately 3350 points during a
displacement between two set points separated by 100 nm. (b) Near-
field (NF) response as a function of the transverse radiator position
(z) demonstrating how we align the radiator apex with the membrane.
The optimal position (where the near-field signal is maximized) is
located at a z position of 0 μm with an uncertainty of ±125 μm. (c)
Experimental (red) and theoretical (black) (fitted horizontally and
vertically) resonance frequency shift as a function of separation for a
ΔT = 4.0 K temperature difference between the membrane and
radiator. The fit suggests a minimal separation of ∼210 nm. The initial
shift of ∼250 Hz at large distances results from the far-field radiative
coupling. Inset: fluctuations at smaller distances lead to loss of
mechanical resonance past the minimum gap of 210 nm. The dotted
blue line identifies the position at which the resonance is lost.
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small shifts in temperature induced by 250 μm misalignments
(ΔTmembrane ≈ 0.014 K) requires a high-resolution radiation
sensor, like the SiN membrane (1.2 × 10−6 K54) employed
here.
Comparison of measured data with the model described

above (Figure 2c, Figure 3) suggests that we reach a minimal

distance dmin = 180 nm (see ΔT = 4.1 K scan in Figure 3)
between the membrane and the hot surface before we lose
track of the membrane mechanical resonance (see typical loss
of tracking in Figure 2c inset). The fit of the experimental data
to the theoretical model accounts for three unknowns: (1) the
radiator-membrane initial (far-field) distance, (2) the un-
certainty of the far-field radiation intensity caused by the
variety of materials present around the radiator (see Figure 1a
inset), and (3) the temperature at the surface of the glass
radiator. In Figure 2c, shifting the experimental data along the
distance (horizontal) axis accounts for the first unknown.
Likewise, shifting along the frequency shift (vertical) axis
accounts for the second unknown while also correcting for
slow frequency drift due to ambient temperature variation in
the vacuum chamber. Finally, for the third unknown, fitting of
the glass radiator surface temperature in the theoretical model
results in an ∼50% reduction compared to the temperature
measured inside the metal ceramic heater. This reduction is
most likely due to heat dissipation in the metal mount (see
Figure 1b).
Our platform currently enables scans at temperature

differences up to ΔT = 25.5 K (Theater = 322.5 K and Tmembrane
= 297.0 K), which is comparable to other macroscale NFRHT
platforms reviewed in ref 61. For all scans with ΔT ≤ 25.5 K,
the tip of the radiator reaches deep sub-wavelength distances

(see dmin values in Figure 3) where the thermal radiative heat
transfer is dominated by SP resonances. Compared to previous
membrane work, a smaller membrane (1.7 vs 3 mm in ref 54)
was found to enable measurements at higher temperatures
(25.5 vs 10 K in ref 54). The smaller membrane resulted in a
better thermal ground from the silicon frame, allowing the
membrane temperature to remain lower and less affected by
far-field radiation. Still, the large size of our radiator is
eventually limiting the maximum reachable temperature
difference in our NFRHT measurement, as is also the case
in other macroscale platforms.61 At temperature differences
greater than 25.5 K, fluctuations and drift, induced by parasitic
heating of the surroundings, eventually prevent continuous
tracking of the membrane resonance frequency. This issue
could possibly be mitigated by use of high-stress SiN
resonators that are less temperature sensitive or by using
smaller heaters/membranes that produce/capture less parasitic
far-field radiation.
Due to the high resolution of our radiation sensor and

positioning system, the accuracy of our minimum-distance
results (dmin in Figure 3) is limited mainly by the uncertainty
on material constants of SiN. During a sampling time typical of
the displacement time between two set points (∼2.5 s), the
root-mean-square fluctuations of the x-axis position and
frequency shift are, respectively, 3.6 nm and 0.026 Hz. These
small fluctuations result in virtually noise-free curves (see
Figure 2c and Figure 3) that can be fitted with our theoretical
model to find the minimum distance achieved with a negligible
influence from fluctuation noise. In contrast, the minimum
distance extracted from this fit varies strongly with the
uncertainties for the material constants of SiN (α, ν, E, ρ).
These propagated uncertainties result in a 50 nm uncertainty
of the minimal distance achieved, for a 4.1 K temperature
difference. More information on uncertainty calculation is
presented in Supporting Information: (Section S.3) position
and frequency stability analysis, (Section S.4) separate optical
measurement of the positioner response, and (Section S.5)
propagation of uncertainty between SiN material constants and
minimum distance achieved.
Reaching minimal distances in the 180−450 nm range (see

Figure 3) implies that we transitioned into a regime where the
radiative heat transfer is quasi-monochromatic, as is desirable
in most NFRHT applications. As shown in Figure 4a,b the
calculated spectral radiative heat flux, at 180 nm and ΔT = 4.1
K, is dominated by a transverse magnetic polarization
resonance at an angular frequency of ω = 9.24 × 1013 rad/s.
This resonance originates from surface polariton (SP)
resonances in the glass radiator, since its parallel wavevector
kp exceeds both material light lines (given by Re(n)k0,

84 where
k0 is the magnitude of the wavevector in vacuum and n is the
refractive index of the material). In Figure 4c, we quantify the
contribution of each of the components of the radiative heat
flux at the tip of the radiator as a function of the separation. A
similar analysis for the heat flux over the full area of the
resonator is available in Supporting Information Section S.6. At
a separation of 180 nm, the SP reaches a contribution of 91.4
± 4% at the tip of the radiator, where the heat flux is therefore
dominated by SP modes. We also show in Supporting
Information Section S.7 that the 100 nm thickness of the
membrane enhances the relative polariton contribution to heat
transfer by a factor of 30% compared to bulk SiN, at a
separation of 180 nm. Temperature-independent versions of
the plots in Figure 4a,b are also reproduced in Supporting

Figure 3. Experimental (red) and theoretical (black) (fitted
horizontally and vertically) radiative heat transfer as a function of
separation for different radiator-membrane temperature differences
(ΔT) showing good correspondence with the theoretical model. The
comparison with the theoretical model suggests that we have reached
the deep sub-wavelength regime for all ΔT values. The minimal
separation dmin achieved is identified in each plot.
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Information Section S.8 (i.e., the mode transmission only, not
weighted by the Plank mean oscillator energy). Plots of the
spectral heat flux for all gaps reported in Figure 3 can also be
found in Supporting Information Section S.9.
Considering the minimal distances (dmin) achieved and the

contribution of each radiative heat flux component (Figure 4),
we infer a deep sub-wavelength effective area of (0.25 mm)2
and a near-field heat transfer effective area of (0.96 mm)2. We

define the former as the projected area of the radiator (at the
apex) that is closer than 825 nm to the membrane (i.e., the
distance in Figure 4 where the SP contribution becomes
dominant). Interestingly, the resulting (0.25 mm)2 is
comparable to microscale plate−plate NFRHT experi-
ments.10,34,35,47,61−63 Within this area, the total heat transfer
is enhanced by a factor of 9 over the far-field intensity (see
extended discussion in Supporting Information Section S.6).
We also note that membranes with areas of (0.25 mm)2 are a
standard commercial product.56 With such dimension, the
entirety of the membrane area could be deep sub-wavelength-
coupled to our radiator, as in a plate−plate experiment but
without the need for θ, ϕ alignment. Predicted results for such
membrane size are presented in Supporting Information
Section S.6, showing that in this case SP contributions largely
dominate over propagating mode contributions over the full
area of the resonator. Conversely, we obtain the (0.96 mm)2
area by calculating the projection of the radiator apex that is
within a distance smaller than Wien’s wavelength (λW = 9.7
μm) from the membrane (i.e., the distance where near-field
enhancement starts occurring due to frustrated waves). The
resulting (0.96 mm)2 is significantly larger than in all previous
sphere-plane experiments,25−31 while also being comparable to
our membrane size (1.7 mm side length).
Several factors could explain why we cannot measure near-

field heat transfer at radiator-membrane distances below 180
nm. From Figure 2c, we note that, after mechanical resonance
is intermittently lost, tracking of the frequency still averages
over values that follow the general near-field trend. It is
therefore possible that contact did not occur between the
membrane and radiator, but that something else causes loss of
frequency tracking. This hypothesis is strengthened by
measurement of the surface flatness of the radiator and SiN
(Figure 5), which show no asperities large enough for
preventing near-field alignment beyond 180 nm. In Figure
5a, particles are detected on SiN, which are probably due to
the fabrication process. Figure 5b shows the presence of longer
engraved patterns on the surface of the radiator. Both are,
however, much smaller than 180 nm.
Reasons, other than contact, that could cause a loss of

frequency tracking are numerous and present interesting
investigation directions. We first note that the resonator
vibration amplitude (set to ∼2 nm in the far-field by a 80 mV
constant-amplitude modulation) sometimes drops (by up to
90%) as the system transitions from far-field to near-field
coupling, making resonator frequency more difficult to track.
This vibration dampening could originate either from parasitic
effects (e.g., trapped charges on the membrane and/or
radiator) or phenomena such as delayed thermal-Casimir
forces58 or bolometric backaction.85 Additionally, in the deep
sub-wavelength regime, spurious fluctuations of the mem-
brane-radiator distance are strongly coupled to the membrane
temperature (and hence to resonance frequency), potentially
affecting PLL frequency tracking. Sources of such distance
fluctuations include resonator actuation (∼2 nm), fluctuation
of the positioner (measured optically to ∼2.5 nm over a 25 Hz
bandwidth, see Supporting Information Section S.4), and
thermomechanical fluctuation noise in the membrane ( x =

k T
m

B

eff 0
2 0.012 nm= ). It is possible that smaller membrane

dimensions (i.e., resulting in a stiffer membrane) could reduce
several of these spurious effects (e.g., fewer trapped charges,
fewer thermomechanical fluctuations, less deformation due to

Figure 4. (a, b) Calculated radiative heat flux, at the radiator apex, per
unit angular frequency, ω, and parallel wavevector, kp, at 180 nm
separation and a temperature difference of 4.1 K for (a) transverse
magnetic (TM) and (b) transverse electric (TE) polarization. The
propagating modes (kp < k0) and the frustrated modes (k0 < kp <
min(Re(nSiOd2

)k0, Re(nSiN)k0)) have modest contributions (1.8% and
6.8%, respectively), while the SP mode (kp > min(Re(nSiOd2

)k0,
Re(nSiN)k0)) (accounting for 91.4% of the total radiative heat flux) is
the dominating mode. (c) Contribution of each of the components of
the radiative heat flux, at the tip of the radiator, as a function of
distance for a 4.1 K temperature difference.
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stiction forces). This remains to be confirmed experimentally
but could allow measurement limited by the surface quality of
our materials (i.e., at gaps <50 nm according to Figure 5).
We have demonstrated that widely available SiN membrane

resonators can enable near-field radiative heat transfer
measurement in the deep sub-wavelength regime, over a
(0.25 mm)2 effective area, without custom nanofabricated
devices. Such membrane size is widely available and can be
used in future work to achieve deep sub-wavelength NFRHT
measurement without the need for custom fabricated micro-
devices. We therefore expect that the reproducibility and
flexibility of our platform will facilitate investigation of new
materials for NFRHT�such as graphene,48 thin-film metals,49

multilayers,50 lossy materials,4 hyperbolic materials,51,52 and
metamaterials53�which can all be easily deposited on SiN
membranes. The fact that nanomechanical resonators are
sensitive to both force and temperature also creates an
opportunity to investigate thermal corrections to the Casimir
effect.
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