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Efficient screening framework for organic solar cells with deep
learning and ensemble learning
Hongshuai Wang 1,2,6, Jie Feng1,2,6, Zhihao Dong1,2, Lujie Jin1,2, Miaomiao Li3, Jianyu Yuan 1,4✉ and Youyong Li 1,2,5✉

Organic photovoltaics have attracted worldwide interest due to their unique advantages in developing low-cost, lightweight, and
flexible power sources. Functional molecular design and synthesis have been put forward to accelerate the discovery of ideal
organic semiconductors. However, it is extremely expensive to conduct experimental screening of the wide organic compound
space. Here we develop a framework by combining a deep learning model (graph neural network) and an ensemble learning model
(Light Gradient Boosting Machine), which enables rapid and accurate screening of organic photovoltaic molecules. This framework
establishes the relationship between molecular structure, molecular properties, and device efficiency. Our framework evaluates the
chemical structure of the organic photovoltaic molecules directly and accurately. Since it does not involve density functional theory
calculations, it makes fast predictions. The reliability of our framework is verified with data from previous reports and our newly
synthesized organic molecules. Our work provides an efficient method for developing new organic optoelectronic materials.

npj Computational Materials           (2023) 9:200 ; https://doi.org/10.1038/s41524-023-01155-9

INTRODUCTION
Organic semiconducting materials exhibit great synthetic flex-
ibility, which allows for excellent tunability over the bandgap,
energy level, and carrier mobility, offering great potential in the
design of efficient optoelectronic devices like organic solar cells
(OSCs). In comparison with inorganic counterparts, OSCs show
unique advantages like light weight, good flexibility, semi-
transparency, etc.1–3. Advances in the last decade in functional
materials design, morphology optimization, and device architec-
ture engineering have led to certified power conversion
efficiencies (PCEs) of over 19%, demonstrating great potential
for emerging photovoltaic technology. However, exploring
suitable organic molecules in the vast organic compound space
is extremely difficult, and efficiency breakthrough in the lab needs
the constant input of intensive labor and time.
Although DFT calculations allow us to acquire many electronic

structural properties of organic molecules without complex
organic synthesis, we still lack an effective mathematical model
to calculate the PCEs directly from the physical properties of the
molecules4–6. In addition, although DFT calculations save eco-
nomic costs, the huge time cost still limits their application in the
high-throughput screening of molecules. Therefore, it’s an urgent
problem to establish a quantitative structure–property relation-
ship (QSPR) model that can conduct the high-throughput screen-
ing of the organic compound space to find more suitable
molecules.
As a powerful technology for mining relationships hidden in big

data, artificial intelligence has brought great development and
prosperity to the field of machine learning7–11. With the
development of material informatics, a new generation of material
research and development paradigms is gradually formed: (1) Use
the material database to train machine learning models. (2) Use
the model to predict new materials. (3) Verify the results with

experiments or calculations12–14. Machine learning shows an
excellent performance in accelerating the discovery of new
materials, guiding the design of new materials, and exploring
the QSPR of materials15–19.
The recent application of machine learning in the field of OSC

shows its potential in performing the high-throughput screening
of organic molecules effectively20–25. Scharber et al. built a model
that can calculate the PCEs with a function of the bandgap and
the energy levels of the conjugated polymer26. Harvard Clean
Energy Project (CEP) collected the calculations and experimental
data of thousands of organic photoelectric molecules and
predicted their PCEs using Scharber’s model27,28. The same team
later used the Gaussian process regression (GPR) method in
machine learning to correct Scharber’s model, which increased its
Pearson correlation coefficient (r) from 0.3 to 0.43 and made a
rough estimate of the PCEs29. However, due to the low accuracy
and the time-consuming quantum mechanics calculations of the
energy levels, Scharber’s model is not competent for the fast and
accurate high-throughput screening30.
By removing the expensive input of quantitative microscopic

properties, Sun et al. established a model with deep learning that
can quickly classify photoelectric molecules25,31. This model can
use molecular graphs or fingerprint information as input to predict
the PCEs interval (0–3% or 3–14.6%). Since the acquisition of
molecular fingerprints does not require additional quantum
mechanics calculations, this model can achieve a fast classification
of molecules but cannot predict the value of PCEs. Moreover, the
accuracy of this model is not satisfactory (69.41%) since the
existing data cannot meet the high demand for deep learning. The
input of the molecular and microscopic properties is very helpful
to improve the accuracy of the model. For example, Alessandro
et al. trained a KRR model that can predict the PCEs better
(r= 0.68) by combining both structural and electronic descriptors,
and such accuracy has met the requirements of the high-
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throughput screening30. With the data collection from published
literature and quantitative calculations, Ma et al. trained a model
that can directly predict the PCEs using the GBRT method32,33. This
model takes the 13 microscopic properties of molecules as input
and shows a high accuracy (r= 0.79). Obviously, the addition of
molecular, microscopic properties improves the accuracy of
existing models, which meets the requirements of high-
throughput screening.
However, many expensive calculations of microscopic proper-

ties (especially excited states) greatly limited the high-throughput
screening of the large-scale organic compound space for suitable
molecules. Therefore, we have to train an accurate machine-
learning model for the high-throughput screening of organic
optoelectronic molecules with input that can be easily obtained.
In this work, we established an automated framework that can

quickly predict the PCEs of OSCs. First, a small dataset containing
high-quality experimental data was used to train an ensemble
learning model that can predict the PCEs based on the physical
and chemical properties of molecules. Then we trained a deep
learning model that can predict the molecular properties
accurately by using a graph neural network (GNN) architecture
and a dataset containing a large number of molecular structures
and properties. Specifically, we used self-learning input (SLI)-GNN,
which was recently developed by ourselves34. Based on these two
models, we designed this framework that can directly predict the
PCEs based on the molecular structure. Finally, the performance of
our framework in high throughput screening is verified by our
experimental results. By a combination of deep learning and
ensemble learning, we achieve direct, fast, and accurate prediction
of PCEs based on molecular structure.

RESULTS
Workflow
Figure 1 shows our efficient prediction workflow for OSCs, which
includes two parts: (1) Predict molecular properties based on
molecular structures with the GNNs model (Property Model). (2)
Train an ensemble learning model to realize the prediction of the

PCEs based on the molecular physical properties (Efficiency
Model). Here we call the GNN model as Property Model and the
ensemble learning model as Efficiency Model.
We collected data and performed DFT calculations to build a

database including the experimental device efficiencies and the
physicochemical properties of molecules. After that, the Effi-
ciency Model was trained using this database, and the relation-
ship between the molecular microscopic properties and
macroscopic properties of devices was established owing to
the ability of machine learning to extract complex relationships.
In order to avoid the time-consuming DFT calculations for the
microscopic properties of molecules, we established the Property
Model with a database containing a large number of molecular
structures and properties to predict molecular microscopic
properties based on molecular structures. With the input of
molecular structures, the Property Model can be used to quickly
predict desired molecular microscopic properties, and the
Efficiency Model can be used to predict the PCEs of the device
based on microscopic properties predicted by the Property
Model. In our framework, the Efficiency Model is critical for
accuracy, and the Property Model is critical for efficiency. The
combination of these 2 models leads to a direct, fast, and
accurate prediction of OSCs from molecular structures.

Dataset and feature selection
Our database contains 440 small molecule/fullerene pairs and
their corresponding PCEs. These data come from published
literature. Since one molecule was synthesized by multiple
experiments and may correspond to multiple PCEs, the highest
PCEs were chosen as the criterion. In order to improve the
Property Model by transfer learning, 200,000 pieces of data
from the Clean Energy Project Database (CEPDB) were used for
pre-training35. These data only include structures and micro-
scopic properties of the molecule without the experimental
PCEs. The details of data selection are given in the Supplemen-
tary Note 1.

Fig. 1 The workflow of framework. Convert molecules to graphs as input to Graph Neural Network models (Property Model). Property Model
predicts the molecular properties of molecules as input to the Light Gradient Boosting Machine (Efficiency Model). Efficiency Model predicts
the final power conversion efficiencies (PCEs) of the organic solar cells.
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The 440 pieces of data are divided into the training set and the
test set according to the ratio of 10:1, and the 2 datasets are used
to train and test model, respectively. The PCEs distributions of
the training set and the test set are shown in Fig. 2a, b,
respectively. The ratio of OSCs with the low (0–3%), medium
(3–6%), and high (6%~) PCEs is about 2:5:3. From Fig. 2a, b, we
can see there is little difference between the training set and the

test set for the PCEs distributions, as the average (avg), the
median (Me), and the dispersion coefficient (σ) is close, which
ensures that the test set is suitable for examining the prediction
accuracy of the models.
Feature selection is an important step in the process of building

machine learning models. Generally, the stronger the correlation
between the features and the targets, the less difficult the learning

Fig. 2 The performance of the Efficiency Model. a The distribution of PCEs in the training set. b The distribution of PCEs in the testing set.
c The feature importance for the LightGBM model. d The violin plots of predictive errors (ΔPCE) trained by different ML techniques. e The
predicted PCEs for the LightGBM model versus experimental PCEs for the training set. f The predicted PCEs for the LightGBM model versus
experimental PCEs for the test set.

H. Wang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   200 



task would be. The feature selection process is to find suitable
physical and chemical properties of molecules showing a strong
correlation with the PCEs for the Efficiency Model. Earlier studies
proved that the microscopic properties of molecules are helpful in
improving the accuracy of the model36,37. Since our ultimate aim is
to achieve high-throughput screening, we need to consider the
availability of data when selecting microscopic properties.
Although the final DFT calculation will be skipped, these proper-
ties still need to be calculated to generate the training set for the
training Property Model. Considering some of the descriptors
previously proposed and the availability of data33, we finally
selected nine properties shown in Table 1 as the learning features
for the Efficiency Model. The selection of these features was made
with a careful consideration of several factors, including their
availability, relevance to the target property (PCE), and prior
knowledge from the literature. To achieve high-throughput
screening, the availability of data for these features is an important
criterion. While some features could yield useful insights, their
inclusion would depend on whether they could be reliably
calculated across a wide range of molecules. To capture the
complexity of the system. The features chosen include ground-
state properties, excited-state properties, and characteristics of
molecular structure. The Pearson’s correlation coefficient between
all features was considered. Supplementary Fig. 1 shows the
Pearson’s correlation coefficient for all features that help us obtain
an initial insight into the data. Most of these features show a weak
correlation with each other. Since the addition of redundant
features can reduce the difficulty of learning, these 9 selected
features are not independent of each other, and some features,
such as Nd (number of unsaturated atoms in the donor molecules),
can be obtained easily without DFT calculation. These features of
440 data are calculated by DFT and constitute the dataset for
training the model. Considering the consistency of the data
distribution, the same calculation method as that of CEPDB35 was
used. The DFT calculation details are given in the section
“Methods”.

Efficiency Model: from molecular property to device
performance
Support vector machine (SVM), random forest (RF), gradient
boosting decision tree (GBDT), and LightGBM are common
machine learning models that have been widely used in the field
of materials science. Based on the training set of 400 small
molecule donors, 4 different models (SVM, RF, GBDT, and
LightGBM) were used to capture the correlation between the

physicochemical properties of molecules and the PCEs of devices.
Leave-One-Out validation was used to assess how well each
model generalizes to another dataset and ensure they are not
over-fitting38. Hyperparameters were optimized with grid searches
in the training and the Leave-One-Out validation. The implemen-
tation details and hyperparameters of 4 models are given in the
“Methods” and Supplementary Table 1. The PCEs distributions
corresponding to the prediction of the models and the experi-
mental determinations, as well as the error distributions on the
dataset, are shown in Fig. 2 and Supplementary Fig. 2. We
employed the violet plot to visualize the error distributions of four
models in Fig. 2d and in the violet plot, the fatter part means the
more centralized distribution of the data. For the SVM and RF
model, there are several abnormal points with absolute errors
exceeding 4%, which deteriorate the performance of the model.
For GBDT and LightGBM models, the errors are basically
distributed, ranging from −2% to ~2%, and most of the points
are concentrated from −1% to 1%. The comparison of these four
models shows that the 2 integrated models using LightGBM and
GBDT have better performance than SVM and RF. From Fig. 2e, f, it
can be seen that the performances of LightGBM on the training
set and test set are similar (r= 0.82, r= 0.87), which indicates that
the model is not overfitting. Figure 2e, f and Supplementary Table
2 show that the RMSE and the r of LightGBM are also better than
SVM and RF models. Since the principles of GBDT and LightGBM
are similar, the performance of the two models is equivalent.
LightGBM has better generalization ability than traditional
boosting models like GBDT, it was selected for the Efficiency
Model to predict the PCEs in the end.
The influence of each feature on PCEs is compared by analyzing

the weight of each feature. The computational details used to
analyze these parameters’ importance are given in the section
“Methods”. Figure 2c shows the weight ranking of each feature
used in the trained LightGBM model. It can be seen that the
molecular orbital energy level has a significant effect on the PCEs,
especially the difference between LUMO and LUMO+ 1 and the
difference between HOMO and HOMO-1. The physical meaning of
these differences is the degeneracy of the HOMO and the LUMO
of a molecule, and their important influences on the photoelectric
properties of the molecule have been proven39,40. In addition, the
energy of the electronic transition to the lowest-lying triplet state
is quite informative among the features41,42. It is clear that the
excited-state properties have an influence on the photo-physical
processes, thus having a relation with the short-circuit current
density43–45. The distinction between the LUMO and LUMO+ 1
energy levels of the acceptor appears to be less significant for the
model. This is likely because, in our dataset, the acceptors are
fullerenes, and there are only two distinct molecules present
(PC61BM and PC71BM).

Property Model: from molecular structure to molecular
property
The Efficiency Model realizes the prediction of the PCEs based
on the molecular properties. However, molecular microscopic
properties that require time-consuming DFT calculations are
inapplicable to high-throughput calculations. Therefore, the
Property Model is trained to establish the relationship between
the structures and the molecular properties. Classical machine
learning methods cannot capture the molecular structure
information well, and it is difficult to achieve molecular
structure-to-property prediction. As a new deep learning
architecture, GNN has a wide range of applications in chemistry
due to its natural adaptability to molecular structures. We
constructed a Property Model using a GNN to capture the
relationship between molecular structure and properties.
Figure 3 shows the framework of the Property Model.

Table 1. The selected features and their physical interpretations.

Feature Physical interpretations

HOMO The highest occupied molecular orbital energy level of
donors

LUMO The lowest unoccupied molecular orbital energy level of
donors

EDAHL The difference between HOMO of donor and LUMO of
acceptor

EDALL The difference between LUMO of the donor and LUMO of the
acceptor

ET1 The energy of the electronic transition to the lowest-lying
triplet state

Nd Number of unsaturated atoms in the donor molecules

ΔLA The difference between LUMO and LUMO+ 1 of acceptor

ΔHD The difference between HOMO and HOMO− 1 of donor

ΔLD The difference between LUMO and LUMO+ 1 of donor
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First, we convert the input molecule structure into a graph, with
atoms as nodes and chemical bonds as edges. Three matrices are
used to record the properties of the molecular graph. Matrix 1
describes the node properties of atoms, matrix 2 describes the
properties of edges, and matrix 3 is an adjacency matrix that
describes the adjacency properties of nodes. The three matrices
are passed to the graph convolution layer after the embedding
operation. The message-passing mechanism of graph convolution
can well describe the influence of connections between nodes.
The output of the graph convolutional layer is pooled as input to
the fully connected (FC) layer. The FC layers give the final
prediction of molecular properties. More details on model building
are given in “Methods”.
The complexity of the graphical model enables it to handle

more complex and variable molecular structures but, at the same
time, increases the data volume requirements. We endeavored to
supplant the Efficiency Model with this model, utilizing the
identical dataset that had been previously employed for the
Efficiency Model’s training. We have presented the outcomes of
this training results in Supplementary Fig. 3. It demonstrates that
the model has a tendency to predict the outcome as the mean of
the power conversion efficiency (PCE). This observation indicates
that the model’s training is suboptimal. It further suggests that the
current volume of data is insufficient for the model to grasp the
relationship between structural attributes and device efficiency. In
order to improve the accuracy of the model, the strategy of
transfer learning was adopted46–48. Based on the original 400
training set, 200,000 CEP data containing molecular structures and
physicochemical properties are used to train the Property Model,
which can predict properties based on molecular structures. This
dataset is used to pre-train the Property Model, a process in which
the model learns to generalize the relationship between molecular
structures and their properties. Essentially, the model is learning a
mapping from molecular structure to molecular properties. Once
this pre-training phase is completed, the model is then fine-tuned
on the original 400-molecule dataset. This step adjusts the
parameters of the model specifically to the task of predicting

the properties of molecules in the smaller but more focused
dataset. The fine-tuning process is where the “transfer” in transfer
learning occurs knowledge gained from the larger dataset is
applied to improve performance on a smaller, related dataset. We
utilized the 5-fold cross-validation (5-CV) method to assess the
generalization ability and robustness of our models. This approach
is effective for estimating the performance of the model on
unseen data and provides a good understanding of the variability
of the model predictions49. Supplementary Fig. 4 and Fig. 4 show
the error distributions corresponding to the direct training with
400 molecular training data and the transfer learning, respectively.
It can be seen that transfer learning improves training accuracy
effectively. The results of the 5 features to be predicted are given
in Fig. 4. It can be clearly seen that the prediction errors of the 5
features are almost distributed in the range of −0.2 eV and
−0.2 eV, which are close to the errors of DFT calculations,
therefore Property Model can accurately predict the microscopic
properties of the molecules we need. The prediction accuracy of
the Property Model for the molecular ground state properties
(HOMO, LUMO, ΔHD, ΔLD) is better than ET1, which is consistent
with the noise distribution of our dataset. The reason is the
accuracy of the DFT calculations of the ground state energy level
is better than that of the excited state energy.

Efficient and generalization ability verification
The Property Model and Efficiency Model utilize a combination of
GNNs and LightGBM to implement the framework from molecular
structure to device efficiency prediction. Forty test data from
previous reports were used to verify the entire framework. The 40
test data have never been used in the training progress of the
above 2 models, so they are 40 “unseen” data for this framework.
First, molecular structures were used as the input into the Property
Model to obtain the corresponding physical and chemical
properties. After that, we used the predicted physical and
chemical properties as the input into the Efficiency Model to
obtain the PCEs. The predicted PCEs and the error distributions are
shown in Fig. 5a, b. From Fig. 5a, b, it can be seen that the

Fig. 3 Illustration of the graph convolution neural networks. a The molecular structure was converted to the molecular graph. b Extract
three features of atoms, bonds, and neighbor matrix from molecular graphs. c The feature matrix embedding operation is input to the graph
convolution layer. d Use the output of the graph convolutional layer as the input of the fully connected layer (FC Layer), and the FC layer
predicts molecular properties.
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Fig. 5 The performance of the whole framework. a The predicted PCEs by machine learning versus experimental PCEs for the test set. b The
predicted PCEs by machine learning versus experimental PCEs for the test set include the Y6 acceptor. c The corresponding error between the
predicted PCEs and experimental PCEs for the test set. d The corresponding error between the predicted PCEs and experimental PCEs for the
test set includes the Y6 acceptor. e Comparison of time consumption for predicting molecular properties by DFT and ML.

Fig. 4 The 5-CV results for the SLI-GNN model (Property Model) versus the calculated values from DFT. a The 5-CV results for HOMO. b The
5-CV results for LUMO. c The 5-CV results for ET1. d The 5-CV results for ΔHD. e The 5-CV results for ΔLD. f The violin plots of errors for five
properties by Property Model.
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prediction results are still accurate (r= 0.79, RMSE= 1.20). Due to
the bias of the Property Model, the RMSE increases and r
decreases versus the PCEs that are directly predicted based on the
properties calculated by DFT. For these 40 data, we only fed their
molecular structures into the framework and skipped the DFT
calculations. Therefore, we have a full progress in approaching the
accurate prediction of the efficiency from the molecular structures
directly. We contrast the time consumption of DFT calculation of
molecular properties with the time consumption of ML prediction
in Fig. 5e. It can be clearly seen that the ML method is significantly
more time-saving than DFT, and the time-consuming of DFT is
exponentially related to the number of atoms. The prediction
progress takes only a few minutes, and the whole framework is
compiled into an easy-to-use Python package, which is described
in detail in Supplementary Note 3.
The construction of the Property Model and Efficiency Model is

based on the fullerene acceptor OSC dataset. Recently, non-
fullerene acceptors received more attention due to various
advantages50–55. The Efficiency Model considered the character-
istics of the molecular acceptors during construction and thus can
be easily generalized to non-fullerene acceptors. We recon-
structed the Efficiency Model by adding 11 non-fullerene acceptor
device efficiencies and their molecular structure of donor and
acceptor to the original dataset as new datasets. Three molecules
that did not participate in training and the original test set were

used as a new test set to test the new model. Details of the non-
fullerene acceptor device data are given in Supplementary Table
4. The tested PCEs and errors are given in Fig. 5c, d. RMSE decrease
and r increase in Fig. 5c compared to Fig. 5a. For non-fullerene
acceptors devices, the model shows excellent generalization
ability.

Novel molecular screening and experimental verification
Novel molecules were designed to test the accuracy and rapid
screening capabilities of our framework. Conjugated molecules
used in OSCs are composed of different types of building blocks
such as donor (D), p-spacer (S), acceptor (A), and end-capping (C)
units shown in Fig. 6a. Through the arrangement and combina-
tion of the 20 fragments in Fig. 6a, 375 molecules of 3
configurations (CADAC, CSASC, CSDSC) were designed as input
for our framework. Their PCEs were predicted by our model in a
few minutes with a personal computer. This demonstrates the
capability of the model to rapidly screen molecules. The
predicted results for all designed molecules are given in
Supplementary Table 5. The distribution of PCEs is shown in
Fig. 6b. As can be seen from Fig. 6b, the PCEs of the molecule in
the CADAC configuration are higher than that of the other two
configurations.

Fig. 6 The results of experimental verification. a Twenty molecular fragments of four types used to splice molecules. b PCEs distribution of
375 designed molecules. c The formula of four small molecules (SM1–SM4) that are synthesized and manufactured into photovoltaic devices
to verify this framework. d I–V curves of four synthetic molecules with two type acceptors PC71BM manufactured into photovoltaic devices.
e I–V curves of four synthetic molecules with two type acceptors Y6 manufactured into photovoltaic devices. f The predicted PCEs by machine
learning versus experimental PCEs for devices manufactured with SM1–SM4.
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In order to validate our framework, 4 small molecules
(SM1–SM4) with CADAC configuration that have not been
reported were synthesized in this work. The formulas of four
molecules are shown in Fig. 6c, with a detailed synthetic routine
displayed in Supplementary Fig. 5 according to the previous
report. They are the representatives of the first generation of
organic photovoltaics molecules (SM1)56, the second generation
of organic photovoltaics molecules (SM2 and SM3)57, and the third
generation of organic photovoltaics molecules (SM4)58. These
molecules were manufactured into OSC devices with PC71BM
(SM1–SM4) and Y6(SM-4) acceptors. We further investigated the
photovoltaic performance of these functional molecules using the
conventional device structure described in the experimental part.
In addition, we adopted both conventional fullerene acceptor
PC71BM as well as recently emerged non-fullerene molecule Y6 as
the electron acceptor. The I–V curve of the optimal device for each
molecule is shown in Fig. 6d, e. The PCEs determined by
experiments and predicted by our framework are shown in Fig.
6f and Table 2. It can be seen that the predicted PCEs of PC71BM-
based devices are very close to the actual experimental PCEs, with
an error below 2%. The predicted PCEs of the Y6-based device
(12.01%) are also very close to the actual experimental PCEs
(11.35%). The trend of the predicted value is also consistent with
that of the experimental value, while the predicted PCEs are
higher than the experimental PCEs. In order to analyze the
predicted results, the features predicted by the Property Model for
the 4 molecules are given in Table 3. As shown in Table 3, the
HOMO and the LUMO of the molecules predicted by the Efficiency
Model are very accurate, as well as the predicted ET1 and ΔLD. The
slight deviation from the calculated value of ΔHD should be the
major factor that influences the predicted PCEs.

DISCUSSION
By using machine learning, a general approach to predict the PCEs
of organic solar cells was developed, which shows excellent
performance (r= 0.79) without any DFT calculation. Efficiency
Model built a quantitative model from molecular properties to
device performance by using the ability of machine learning to
derive relationships from large amounts of data. This model solves
the problem that traditional calculation cannot directly obtain
accurate device efficiency theoretically. The Property Model
established the corresponding relationship between molecular
structure and properties utilizing the natural adaptability between
GNN and molecular structure. The problem in the Efficiency Model
that large-scale screening cannot be achieved due to the high
computational cost of molecular properties is solved by the
Property Model. An OCSs database which has nearly 500
molecules with the calculated properties (HOMO, LUMO, ET1 et
al.) was established. The workflow was developed into an easy-to-
use Python software package, which is open access. Our work is
expected to significantly assist the development of OCSs and the
design of new efficient materials like OLEDs or organic catalysts
with high-throughput screening.
The combination of the two models makes it possible to

predict device performance from molecular structure. The
reliability of the model has been verified by experiments.
However, since the feature selection of the Efficiency Model
only considers some properties of the electronic structure of a
single molecule, it ignores some factors that can affect the
device efficiency, such as molecular side chains, which are highly
correlated with solubility. Therefore, the accuracy of this working
framework can be further improved if more features at larger
scales are considered. But it also increases the difficulty of
building the model.
Although we attempted to assess the generalization ability of

their model by incorporating 11 non-fullerene acceptor devices in
the Efficiency Model and testing it on 3 additional non-fullerene
acceptor devices, the number of testing systems appears to be
insufficient. As we are aware of the significance of this new class of
materials, we are in the process of expanding our dataset to
include more non-fullerene acceptors for both training and testing
purposes. We believe that as we gather more data, the accuracy
and applicability of our model will further improve.
In addition, since the space of organic molecules is almost

infinite, how to construct the molecular structure that needs to be
screened is another problem that needs to be explored. This
approach involves generating completely new molecular struc-
tures from scratch using computational algorithms, often guided
by desired properties or specific design criteria. More active
learning strategies, such as generative adversarial networks and
reinforcement learning combined with our model, could enable
the transition from high throughput screening to automatic
design. This will help researchers efficiently explore the vast
chemical landscape and identify promising candidates for organic
solar cells.

METHOD
Quantum chemical calculations
The ground state structures of all molecules were optimized by
DFT/BP86 with the def2svp basis set59–61. The energy levels of the
molecules were calculated with B3LYP/def2svp based on the
optimized geometries59,61,62. The energy of the electronic transi-
tion to the lowest-lying triplet state was calculated by TD-DFT/
M062X with the 6–311 g(d) basis set63,64. To avoid a very high
computational cost, side alkyl chains were not considered in the
calculations though they have negligible influences on electronic
properties. All the calculations above were performed using
Gaussian 09 software package65.

Table 2. The device performances of SM1–SM4 and their
corresponding PCEs predicted from our model.

Donor Acceptor Voc (V) Jsc (mA/
cm2)

FF (%) PCEs (%) Predicted
PCEs (%)

SM1 PC71BM 0.85 9.40 0.54 4.29 5.94

SM2 PC71BM 0.97 9.06 0.59 5.19 6.83

SM3 PC71BM 0.92 7.42 0.63 4.27 5.74

SM4 PC71BM 0.90 9.71 0.62 5.44 5.34

SM4 Y6 0.81 23.05 0.61 11.35 12.01

Table 3. The calculated and predicted features of SM1–SM4.

SM1/eV SM2/eV SM3/eV SM4/eV

HOMO_cal −4.771 −4.987 −4.908 −4.826

HOMO_pre −4.780 −4.917 −4.882 −4.847

LUMO_cal −2.979 −2.967 −2.929 −2.923

LUMO_pre −3.007 −2.954 −2.919 −2.967

ET1_cal 1.224 1.410 1.403 1.449

ET1_pre 1.277 1.554 1.558 1.469

ΔHD_cal 0.464 0.247 0.159 0.261

ΔHD_pre 0.323 0.404 0.355 0.316

ΔLD_cal 0.158 0.134 0.088 0.075

ΔLD_pre 0.197 0.113 0.105 0.101

The subscript ‘cal’ means the value calculated from DFT calculations, while
the subscript ‘pre’ means the value predicted from the Property Model.
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Machine learning models
Scikit-Learn was used to obtain the SVM, GBDT, and RF algorithms,
which were chosen to build models for the control study66. The
details of the model evaluation metrics are given in Supplemen-
tary Note 2. SVM is an algorithm that learns the importance of
each training data point for representing the decision boundary
between the 2 categories67,68. RF and GBDT are 2 sub-models of
Decision Tree (DT) models69. To address the problem of overfitting
that limits the application of DT, RF utilizes randomness injection
into the tree building while GBDT tries to correct the mistakes of
the previous tree continuously70–72. The Light Gradient Boosting
Machine (LightGBM) model is a tree-based learning algorithm
improved from GBDT, hence this algorithm has the advantages in
regularization and multiple loss functions73. Instead of using all
the sample points to calculate the gradient, GOSS (Gradient-based
one-side sampling) was used to calculate the gradient. Exclusive
feature bundling combines certain features together to reduce the
dimensionality of the features and find the best segmentation
point to reduce consumption. Hyperparameters of these models
are given in Supplementary Table 1.
Feature importance in Fig. 2c is computed with the feature_-

importances_ in the Scikit Learn package. It is fundamentally a
measure of how much a particular feature contributes towards
improving the prediction accuracy of the model. This is achieved
by analyzing how each feature influences the splitting decisions
within the ensemble of decision trees that form the gradient-
boosting model. The “split” method was used in this study; the
importance of a feature is determined by the number of times it is
used to split the data across all trees in the model. This provides
an indication of the frequency of a feature’s usage in generating
the decision trees.
Property Model is implemented in PyTorch Geometric, a library

built upon PyTorch to easily write and train GNNs. The atom, bond,
and neighbor feature embedding layers produce 64–256 dimen-
sional inputs to the graph convolution layers. The main body of
the network consists of 3–9 graph convolution (GCN) layers, each
with hidden dimension 128. The final atom representations are
reduced by global mean pooling and mapped to regression
outputs by the full connection layer. Hyperparameters of this
model are given in Supplementary Table 3.

Devices fabrication
First, PEDOT:PSS was spin-coated onto the pre-cleaned ITO
substrate at 4500 rpm for 40 s after the filtration through a
0.45 µm filter, and then the substrates were baked at 150 °C for
10min under ambient conditions. Subsequently, for PC71BM-
based device, a blend of the small molecule and PC71BM was
dissolved in chloroform (the total concentration: 14mgmL−1, D/A
weight ratio: 1/0.8, 0.5% DIO as additive), and the blend solutions
were spin-cast onto the PEDOT:PSS layer at a spin-coating rate of
2500 rpm, after the active layers were treated with thermal
annealing at 100 °C for 10 min; for Y6 based device, a blend of the
small molecule and Y6 was dissolved in chloroform (the total
concentration: 16 mg/mL, D/A weight ratio: 2/1). The blend
solutions were spin-cast onto the PEDOT:PSS layer at a spin-
coating rate of 3000 rpm, and the active layers were treated with
thermal annealing at 150 °C for 5 min. Then, 8 nm PFN-Br was spin-
coated onto the active layer. Finally, Al at a speed of 2 Å/s
(100 nm) was thermally evaporated to accomplish the device
fabrication. The J–V characterization was performed by Keithley
2400 digital source meter under simulated AM 1.5 G solar
irradiation at 100 mW cm−2. The device area is 0.0725 cm2, and
solar cell devices were measured in forward scan (−1.0 V→ 1.0 V,
step 0.0125 V, scan rate: 0.1 V s−1) in the glovebox.

DATA AVAILABILITY
We have included 440 instances of training data for the device efficiency model,
which can be found in train.db and test.db files under the ‘data’ fold in https://
github.com/HongshuaiWang1/OPVGCN. This fold further houses the data pertaining
to our uniquely designed molecules, including their Power Conversion Efficiencies
(PCEs), denoted as C***C.db and predC***C.db, respectively. Lastly, data from the
esteemed Harvard Clean Energy Project can be accessed at: https://
www.matter.toronto.edu/basic-content-page/data-download.

CODE AVAILABILITY
We have generously provided unfettered access to our code and model at the
following locations: https://github.com/HongshuaiWang1/OPVGCN and https://
github.com/Austin6035/SLI-GNN.
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