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A B S T R A C T   

Solar energy is considered one of the key solutions to the growing demand for energy and to reducing greenhouse 
gas emissions. Thanks to the relatively low cost of land use for solar energy and high power generation potential, 
a large number of photovoltaic (PV) power stations have been established in desert areas around the world. 
Despite the contribution to easing the energy crisis and combating climate change, large-scale construction and 
operation of PV power stations can change the land cover and affect the environment. However, few studies have 
focused on these special land cover changes, especially vegetation cover changes, which hinders understanding 
the effects of the extensive development of solar energy. Here, we used Continuous Change Detection and 
Classification - Spectral Mixture Analysis (CCDC-SMA) based on Landsat images to monitor changes in vegetation 
abundance before and after the PV power stations deployment. To reduce the interference of PV shading on 
vegetation abundance estimation, we improved the vegetation (VG) fraction from SMA and developed the 
Photovoltaics-Adjusted Vegetation (PAVG) fraction for vegetation abundance measurements in PV power sta-
tions. Results show that PV power stations in China’s 12 biggest deserts expanded from 0 to 102.56 km2 from 
2011 to 2018, mainly distributed in the central part of north China. The desert vegetation in the deployment area 
of PV power stations presented a significant greening trend. Compared to 2010, the greening area reached 30.80 
km2, accounting for 30% of the total area of PV power stations. Overall, the large-scale deployment of PV power 
stations has promoted desert greening, primarily due to government-led Photovoltaic Desert Control Projects and 
favorable climatic change. This study shows the great benefits of PV power stations in combating desertification 
and improving people’s welfare, which bring sustainable economic, ecological and social prosperity in sandy 
ecosystems.   
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1. Introduction 

Deserts account for 17% of the world’s land area, mainly distributed 
in Asia and Africa (Cherlet et al., 2018; Durant et al., 2012). With the 
desertification caused by climate change and population growth, deserts 
have continued to expand in recent decades (Huang et al., 2016; Rey-
nolds et al., 2007). The harsh environmental conditions of the desert 
seriously affect social-economic development (Adeel et al., 2005). As 
renewable energy development is accelerating globally, more and more 
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PV power stations are built in desert areas to meet the growing demand 
for sustainable energy (Kruitwagen et al., 2021; Li et al., 2018). Deserts 
are becoming the ideal places for constructing photovoltaic (PV) power 
stations, due to sufficient light conditions and broadly available land 
resources (Tanner et al., 2020). Apart from croplands, deserts are the 
most deployed areas for PV power stations worldwide by 2018 (Kruit-
wagen et al., 2021). 

The deployment of PV power stations requires large amounts of land 
to accommodate solar arrays, roads, and transmission corridors, which 
will cause large-scale land conversion in desert areas (Edalat and Ste-
phen, 2017; Lovich and Ennen, 2011). Vegetation coverage and inherent 
biological soil crusts will be disturbed during the construction process, 
causing increased desertification and biodiversity reduction (Grodsky 
and Hernandez, 2020; Scarrow, 2020; Wu et al., 2014a). After con-
struction, PV panels block solar radiation and rainfall. The redistributed 
precipitation and light gradients that shift with the movement of the sun 
alter the carbon cycling, soil water retention, soil erosion and ecosystem 
energy balance below the PV panels (Tanner et al., 2020; Wu et al., 
2022). Field surveys have shown that the PV panels can help maintain 
high soil moisture levels and relieve heat stress by adjusting the air and 
ground temperature, which accelerate vegetation recovery progress in 
arid areas (Liu et al., 2019; Marrou et al., 2013). However, vegetation 
recovery from PV deployment may vary across regions because of 
environmental heterogeneity, PV site preparation methods, and solar 
technology (Tanner et al., 2020). At the macro level, there is still a lack 
of understanding and evidence of vegetation changes in desert areas 
resulting from large-scale PV panel deployment, partly because 
large-scale field surveys can be costly and time-consuming. 

Satellite remote sensing has long been instrumental in revealing both 
spatial and temporal vegetation patterns (Kattenborn et al., 2021). 
Vegetation indices, such as Normalized Vegetation Difference Index 
(NDVI), have been extensively used to monitor the dynamics of vege-
tation. For example, Potter. (2016) calculated the NDVI time series using 
30 consecutive years of Landsat satellite image data to quantify and 
characterize the vegetation canopy density changes of PV power stations 
across the Lower Colorado Desert region (Potter, 2016). However, 
influenced by factors like the soil brightness, color and texture, NDVI is 
inadequate in providing accurate estimates of shrubland cover in arid 
areas and limited utility in arid ecosystems (Dawelbait and Morari, 
2012). Compared to vegetation indices, physically-based approaches, 
such as Spectral Mixture Analysis (SMA) utilizes information from all 
spectral bands and improves estimates of the fractional cover of vege-
tation, especially in arid areas where vegetation is sparse and vegetation 
indices are affected by soil color (Elmore et al., 2000). In addition, since 
the result from SMA is physically meaningful, its interpretation is 
straightforward and linked to the underlying processes (Lewińska et al., 
2020). Edalat and Stephen. (2017) applied SMA to analyze the 
land-cover change caused by establishing two PV power stations in 
Nevada (Edalat and Stephen, 2017). Compared to the large-scale power 
stations deployed in desert areas, analysis at small scales (one or two 
utility-scale PV power stations) in these studies can be limited and not 
sufficient to reveal vegetation change from satellite imagery. This 
research gap existed mainly because of the lack of large-scale and 
spatially explicit PV power stations data. While, recent advancements in 
mapping spatially explicit PV power stations at large scales have helped 
narrow the data gap (Kruitwagen et al., 2021). This advance allows us to 
integrate the PV spatial data with advanced satellite-derived vegetation 
indicators to explore vegetation changes caused by large-scale PV power 
stations deployment. 

In this study, we took the deserts with PV power stations in China as 
the geographical focus. This is because numerous news has reported that 
PV development in deserts helped turn semi-desert green (China Daily 
Global, 2019; The state council of the P.R.C., 2020). But to date, there is 
little quantitative analysis to confirm the changes at a large scale. The 
objectives of this study are: (1) to detect the initial deployment date of 
PV power through time series analysis; (2) to quantify the vegetation 

abundance within the area of PV power stations and measure the extent 
to which the deployment of large-scale PV power stations in deserts has 
contributed to vegetation recovery during 2010–2018. Here, we used 
Continuous Change Detection and Classification - Spectral Mixture 
Analysis (CCDC-SMA) model (Chen et al., 2021a) to monitor vegetation 
changes before and after the PV power stations deployment. We 
improved the vegetation (VG) fraction obtained with the SMA model 
and developed the Photovoltaics-Adjusted Vegetation (PAVG) fraction 
for vegetation abundance measurements in PV power stations. This new 
index can effectively reduce the interference of PV shading on vegeta-
tion abundance estimation. The analysis was implemented on Google 
Earth Engine (GEE) cloud-computing platform, which is highly trans-
ferable and can be easily applied to similar studies in other regions. The 
study revealed ecological benefits and the economic profits of deploying 
PV power stations in desert areas. It can help researchers and policy-
makers to pay more attention to the sustainable management of 
large-scale PV power stations in arid ecosystems. 

2. Study areas 

China has vast desert areas, mainly located in the northern arid and 
semi-arid regions (SFA, 2011). In these areas, where ecosystems are very 
fragile, PV power stations are booming (Wu et al., 2014a). Here, we used 
the Chinese desert area mapped by Li et al. (2019) as the study area, 
which is established by visual interpretation of Google images (Li et al., 
2019). The spatial span of the study area is large, covering 76◦ E− 122◦ E 
and 36◦ N–49◦ N, and contains China’s top 12 biggest deserts (Fig. 1): 
Taklamakan Desert (TakD), Gurban Tunggut Desert (GTD), Qaidam 
Desert (QaiD), Kumtag Desert (KumD), Badain Jaran Desert (BJD), 
Tengger Desert (TenD), Ulan Buh Desert (UBD), Hobq Desert (HobD), 
MU US Sands (MUS), Hunshandake Sands (HunS), Hulunbuir Sands 
(HulS), and Horqin Sands (HorS). Fig. 1 shows the spatial distribution of 
the major deserts. The desert area is remapped to 0.25◦* 0.25◦ for the 
gird area. In addition, the spatial data of PV power stations are obtained 
from the global database of non-residential PV solar energy installations 
(Kruitwagen et al., 2021). 

3. Methods and dataset 

In order to analyze the vegetation changes before and after PV power 
stations deployment, it is important to determine the deployment time 
and extract vegetation information of PV power stations from Landsat 
time series imagery. The major procedure performed in our study 
comprised three steps (Fig. 2). The first step is image pre-processing. The 
second step is to obtain PV and vegetation information by running the 
CCDC-SMA model, including two sub-parts: 1) The development of five 
fraction images from Landsat images using SMA model, including the 
PAVG fraction; 2) The use of CCDC algorithm in monitoring the land 
cover changes to further determine the PV deployment date. The third 
step is analyzing the vegetation change before and after the PV power 
stations deployment. 

3.1. Data collection and preprocessing 

Surface reflectance data of Landsat-7 Enhanced Thematic Mapper 
Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) were 
collected and integrated from Google Earth Engine (GEE). All available 
Landsat-7 and Landsat-8 Surface Reflectance images were atmospheri-
cally corrected and archived in GEE as the “LANDSAT/LE07/C01/ 
T1_SR” and “LANDSAT/LC08/C01/T1_SR” dataset. A total of 8710 
Landsat images were used in this study from 2010 to 2021, including 
2162 Landsat-7 ETM + images and 6548 Landsat-8 OLI images. We used 
the Quality Assessment band to detect and mask clouds and shadows and 
applied the USGS Landsat-7 Phase-2 Gap filling protocol (More details at 
https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-pro 
ducts-phase-two-methodology) to fill the gaps in the Landsat-7 SLC-off 
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images. In addition, the spatial data of PV power stations in the study 
area were extracted from the global PV solar energy facility footprint 
dataset (Kruitwagen et al., 2021) and reviewed through visual inter-
pretation to delete PV power stations misclassified. 

3.2. Fractional mapping using LSMA 

Among the commonly used SMA models, the Linear Spectral Mixture 
Analysis (LSMA) model was used to calculate the fraction of endmem-
bers, which is easy to use and performs well in the previous study related 
to PV power stations (Edalat and Stephen, 2017). When relatively few 
endmembers are required to describe the surface composition and field 
data is limited, LSMA is an appropriate choice (Vermeulen et al., 2021). 

Selecting appropriate endmembers is the key to successful unmixing 
models (Elmore et al., 2000). The PV power station is mainly composed 
of fixed PV panels, and the spacing between PV panels is generally less 
than 10 m. Considering that the spatial resolution of Landsat images is 

only 30 m, each pixel is a mixture of PV panels, soil, vegetation and 
shadows (Edalat and Stephen, 2017). Consistent with the previous study 
(Edalat and Stephen, 2017), four typical endmembers applicable to PV 
power stations are used in desert areas, including high albedo (HA), low 
albedo (LA), vegetation (VG), and shadow (SH). HA represents sandy 
ground that reflects most of the light in this study, while LA is defined as 
PV panels that absorb most light. The reference image was created using 
the median reflectance from June to September in 2018 and principal 
component analysis (PCA) was used to reduce the spectral dimension-
ality of the image. 

The potential endmembers were selected from the scatter plots of the 
former three PCA components (Fig. S1). The endmembers tend to choose 
the representative pixels nearest to the apexes of the scatter plots and the 
types of the pixels at the apexes were determined by linking the pixels 
back to the image-feature space (Edalat and Stephen, 2017; Wang et al., 
2012). Different from other endmembers, the LA endmember was 
selected in Landsat imagery and high-resolution imagery. We selected 

Fig. 1. Spatial distribution (a) and area (b) of large deserts in China, PV power stations located in various desert areas (c–e).Image source: http://news.hsw.cn/sys 
tem/2021/1223/1410219.shtml, https://www.sohu.com/picture/418386974, https://www.meipian.cn/1rxa6a11. 
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more than 20 candidate pixels from a large flat-roof PV facility, and took 
the mean of the reflectance of candidate pixels as the reflectance of final 
LA endmember. Fig. S1(a) shows the location of the LA endmember in 
the scatter plots of the first three PCA components. The LA endmember is 
located at the edge of the scatter plots, indicating that it is not easily 
confused with other endmembers. In addition, the shadow endmember 
was assigned to zero reflectance at all wavelengths (Chen et al., 2021a). 
Since the spectral features of endmembers were obtained from 
Landsat-8, we further harmonized Landsat-7 data to Landsat-8 data 
using a statistical transformation function to avoid differences in the 
spectral response due to sensor specifications (Roy et al., 2016). The 
LSMA process was implemented in GEE, and the output fractions are 
constrained to be non-negative and summed to one. The root mean 
square error (RMSE) was used to assess the model’s accuracy. 

3.3. Photovoltaics-Adjusted Vegetation (PAVG) fraction 

Because the PV panels are usually placed at a certain angle (about 
35◦ in desert areas of northern China) and supported by brackets, the PV 
panels and shadows (uniformly denoted as panel shading) would hinder 
the remote sensing observation of the underlying surface. In addition, 
field observations from several PV power stations in desert areas indi-
cate that panel shading does not significantly affect the vegetation 
abundance of sandy ecosystems (Tanner et al., 2020). Therefore, we 
inferred that the VG fraction from SMA ignores the vegetation 

abundance in areas affected by panel shading within the pixel, thus 
underestimating the true VG abundance in PV power stations. To reduce 
the interference caused by panel shading, we created a 
Photovoltaics-Adjusted Vegetation (PAVG) fraction, computed by the 
fraction images obtained with SMA model. Taking the shade-normalized 
Green Vegetation fraction as a reference (Souza et al., 2005), we 
renormalized the VG fraction by subtracting the increased LA and SH 
fractions after the PV power stations deployment from the denominator. 
The PAVG fraction represents the true vegetation abundance after the 
PV deployment within a pixel. 

PAVG=
VG

1 − ΔSH − ΔLA
(1)  

WhereΔSHandΔLAdenote the difference of SH and LA fractions for pre- 
deployment and post-deployment, respectively. Here, the median of 
LA and SH fractions from June to September in 2010 were used as the 
reference values for pre-deployment. This date is sufficiently old to 
ensure that all PV power stations are deployed after that. Using images 
from June to September reduces the interference of seasonal variability 
(e.g. snow). 

3.4. Accuracy assessment of vegetation abundances 

Accuracy assessments of VG and PAVG results were conducted using 
the reference vegetation fractional cover information derived by visual 

Fig. 2. Flowchart of methodology. (HA: high albedo, VG: vegetation, SH: shadow, LA: low albedo, PAVG: Photovoltaics-Adjusted Vegetation).  
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interpretation of very high-resolution (VHR) images. To generate the 
reference dataset, a total of 100 Landsat pixels (size 30 × 30 m) were 
randomly selected and then split into a 10 × 10 grid of 100 sample cells 
each. The percentages of the vegetation cover for the pixel sample were 
calculated through visual interpretation of the VHR images as shown in 
Fig. S2. These values were used as the reference to evaluate the vege-
tation abundances from SMA. Landsat images used in the evaluation 
process are derived from observations nearest to the VHR acquisition 
dates. 

3.5. Continuous Change Detection and Classification for PV power 
stations 

To monitor land cover changes caused by the PV power stations 
deployment, the time series of all endmember fractions were used to run 
the Continuous Change Detection and Classification (CCDC) algorithm 
(Zhu and Woodcock, 2014). The CCDC algorithm uses harmonic 
regression to predict future observations based on available observa-
tions. When new observations deviate from the predicted observations 
for a certain number, a break is marked and a new regression model is 
estimated. 

Prior to the deployment of PV power stations, there was almost no 
significant land-use change in the desert area due to less human activity. 
Since the fraction of endmembers usually changes significantly with the 
deployment of PV power stations. The breaks in CCDC-SMA models are 
usually interpreted as the deployment time of PV power stations at pixel 
scale. We used all the fraction of endmembers as the inputs to the CCDC 
algorithm and limited the number of breaks. This helps reduce noise 
from other land cover and land use changes (such as dune movement). 
For each PV power station, we calculated the mode value of the 
deployment time for the pixels inside the PV power station and counted 
it as the deployment time of the PV power station (Time unit: Year), 
which also reduces estimation errors at the pixel scale. 

In the CCDC algorithm, the number of continuous observations that 
determines the break is set to 6. After repeated tests, we believed that 6 
was an appropriate threshold to determine the deployment time of all PV 
power stations. To test the accuracy of the estimated results of PV power 
stations deployment time, manual interpretation was used for all the PV 
power stations from the whole study area and 107 PV power stations 
were assessed in the accuracy validation. The actual deployment time 
was extracted by visual interpretation of time-series images. A very 
small percentage of PV power stations have a long construction period 
and are not limited to one year, leading to some uncertainty in the 
statistical results. 

3.6. Vegetation area estimation and abundance change analysis 

The ground cover area of different land cover types can be estimated 
with the abundances after spectral unmixing (Chen et al., 2021b). Thus, 
the PAVG fraction of each pixel multiplied by the corresponding pixel 
area was used to calculate the vegetation area at each pixel: 

Sveg =PAVGmax × Spixel (2)  

whereSvegandSpixeldenote the vegetation area and the corresponding 
pixel area, respectively.PAVGmaxis the maximum value of PAVG frac-
tions from June to September. 

Abundance change analysis was used to provide information on 
vegetation gain and loss, and to further identify the degradation and 
greening of desert vegetation after the PV power stations deployment. 
After the PV power station deployment, we used the difference between 
VG images in 2010 and PAVG images to analyze vegetation abundance 
changes. Both images are composites using the maximum value from 
June to September. The difference between the abundance and actual 
vegetation cover is generally less than 0.15 (Lu et al., 2011; Wu and 
Murray, 2003), which is also applicable in this study after visual 

interpretation test. Thus, we used 0.15 as the non-change threshold and 
defined three types as follows: 

Vegetation degradation: 0.15 ≤ pdiff ≤ 1.0 
Non-change: − 0.15 < pdiff < 0.15 
Vegetation greening: − 1.0 ≤ pdiff ≤ − 0.15where pdiff was defined 

as the difference between VG images in 2010 and PAVG images after the 
PV power stations deployment. 

4. Results and analysis 

4.1. Performance evaluation of the method 

Fig. S3 shows the RMSEs of the LSMA model (the reflectance is scaled 
up by 10,000), which were calculated using the median reflectance from 
June to September in selected years. The average RMSEs for all years did 
not exceed 125, which was relatively low and showed good consistency 
over time (Fig. S3). Taking the results of 2018 as an example (Fig. S3(a)), 
higher RMSEs mainly occurred in the western desert area (TakD), while 
the other deserts, especially the central deserts, had low RMSE, gener-
ally less than 200. The high RMSEs are due to the fact that a fixed 
number of endmembers may not sufficiently deal with complex land 
cover compositions (Deng and Wu, 2016). The land cover at the edge of 
TakD is more inclined to saline-alkali land than the sandy ground, 
deviating from the four endmembers defined in this study. Similarly, the 
impervious surface is not included in the four endmembers, and can also 
explain the high RMSEs of impervious surface facilities inside PV power 
stations (Fig. S3(b)). The black area in Fig. S3(b) is the impervious water 
surface facilities of PV power stations (e.g. substations). 

4.2. Analysis of endmember fractions and validation of fractional 
vegetation cover 

Fig. 3 shows an example of spectral unmixing of a PV power station. 
Compared to the surrounding desert areas, PV power stations have high 
fractions of LA and SH, and low fraction of HA (Fig. 3b, e, f). In Fig. 3c, 
the shelterbelt is planted around the PV power station, which results in a 
high VG fraction at the edge of the PV power station. Compared with the 
original VG fraction image, the vegetation abundance of the PV power 
station is enhanced in the PAVG fraction image (Fig. 3f). 

The quantitative relationship between two fractions (VG and PAVG) 
and the reference dataset is shown in Fig. S2. As expected, there is a 
significantly positive linear correlation between two fractions and the 
reference data. We found the correlation performs better for PAVG 
fraction than VG fraction. For PAVG fraction, we observed a consistently 
high agreement close to the 1:1 line with an RMSE of 0.06, while VG 
fraction generally underestimated vegetation cover in the PV power 
stations. It indicates that the PAVG fraction obtained after VG fraction 
correction can effectively reduce the error caused by PV shading, and 
ensure the consistency of vegetation cover estimation before and after 
the PV power station deployment. 

4.3. Rapid expansion of PV power stations in China’s desert areas 

The deployment sites of PV power stations in desert areas can be 
divided into: vegetation-covered areas and non-vegetation-covered 
areas. Before the PV power stations deployment, the soils usually need 
to be graded, resulting in vegetation removal (Hernandez et al., 2014). 
Fig. S4 shows an example of a vegetation degradation event caused by 
the deployment of PV power stations. The timing of the start and 
completion of PV panel installation at the sample sites was derived from 
visual identification of the Landsat time-series imagery. The original 
dominant land cover type at this sample site was shrubland and sandy 
ground, with relatively high VG, SH, and HA fractions. After the PV 
power station deployment, the HA and VG fractions decreased, and the 
LA fraction increased significantly. The SH fraction varied less because 
the shrubland has a high SH fraction before. 
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In contrast, Fig. S5 shows an example of a significant increase in 
vegetation abundance after the PV power stations deployment. The 
original land cover type of the sample site was sandy ground without any 
vegetation. Before the PV power station deployment, the VG fraction 
was close to 0, and the HA fraction was very high. After deployment, the 
SH and LA fractions increased significantly, and the HA fraction 
decreased. The VG fraction also increased slightly, while the PAVG 
fraction increased more. In addition, the LA fraction and SH fraction of 
the two sample sites fluctuated greatly after deployment, which may be 
caused by periodic variation of the solar altitude angle. 

We further identified the deployment years of all PV power stations 
by using the breaks in the CCDC-SMA model. The results show that 
China began deploying PV power stations in desert areas as early as 
2011. Validation of deployment years showed that 81 of 107 PV power 
stations (78%) had the same interpreted deployment year as the pre-
diction (see Fig. S6). The deployment year mean error was − 0.27 years 
with a standard deviation of 0.52 years. The total PV power stations area 
increased continuously over the next eight years with an overall rate of 
17 km2/year, from 0.05 km2 in 2011 to 102.56 km2 in 2018 (see Fig. 4). 
The largest gain occurred in 2016 (30.69 km2). The total area of PV 
power stations was unevenly distributed across space. In 2018, MUS had 
the largest area of PV power stations (30.80 km2, 30.0%), followed by 
TenD (29.50 km2, 28.8%), UBD (11.33 km2, 11.0%) and HobD (8.14 
km2, 8.0%). Compared with other deserts, these four deserts are located 
in the central part of north China, and the surrounding areas have a 
higher level of economic development. Therefore, considering the 

convenience for maintenance (i.e., road density), and the availability of 
social infrastructure (i.e., population density), these deserts become hot 
spots for the deployment of PV power stations, and account for 
approximately 80% of the total area. 

4.4. Vegetation change associated with expansion of PV power stations 

With the increase in PV deployment area, the vegetation area within 
PV power stations increased drastically from 0.02 km2 in 2011 to 25.67 
km2 in 2018 (Fig. 5a). The proportion of vegetation area to the total area 
increased from 14% in 2013 to 25% in 2018. Considering the vegetation 
area of PV power stations in each desert in 2018, the top three deserts 
are MUS (10.4 km2), TenD (5.3 km2) and UBD (3.5 km2), which are 
consistent with the deployment area ranking (Fig. 5b). Although the 
deployment area of GTD and BJD is relatively high (>4 km2), the 
vegetation area of GTD and BJD is very low (0.36 km2 and 0.07 km2 

respectively), which indicates that the proportion of vegetation 
coverage in PV power stations in different deserts is quite different. 

Overall, the greening area of all deserts is much larger than the 
degradation area, indicating an overall greening trend of desert vege-
tation after the PV power stations deployment. From 2011 to 2018, the 
greening area within the range of PV power stations increased to 30.8 
km2 substantially, with the largest greening area in 2016 (31.9 km2). For 
most deserts, the degradation area is negligible compared to the 
greening area. However, due to the lack of imagery information in some 
areas caused by summer cloud cover, the greening area in 2017 

Fig. 3. An example of spectral unmixing of a PV power station in 2018: Landsat-8 image (red-green-blue) (a); Fraction of LA (b); Fraction of VG (c); Fraction of SH 
(d); Fraction of HA (e); Fraction of PAVG (f).. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 4. Total areal changes of PV power stations in desert areas from 2011 to 2018 (a), and areal proportion in 2018 by desert (b).  
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experienced a brief and substantial decline. On the other hand, the 
degradation area gradually increased and peaked (5.4 km2) from 2011 
to 2016, and then gradually decreased, with an area of 2.1 km2 in 2018. 
Fig. 5d shows the greening and degradation areas in each desert in 2018. 
The top three deserts with the largest greening area are TenD (11.0 
km2), UBD (5.8 km2) and MUS (4.7 km2). In addition, MUS has the 
largest degradation area, four times the total degradation area of other 
deserts. 

5. Discussion 

5.1. Driving factors for the vegetation change 

Previous remote sensing studies of a few PV power stations have 
demonstrated that the PV power station deployment does not signifi-
cantly alter desert vegetation (Edalat and Stephen, 2017; Potter, 2016). 
In contrast, we observed significant vegetation changes caused by the 
deployment of PV power stations in China’s desert areas, including 
vegetation greening and degradation. The findings suggest the impor-
tance of conducting large-scale remote sensing observations for a 
comprehensive understanding of the ecological impacts of PV power 
stations. Fig. 6a shows the difference in average vegetation abundance 
before and after each PV power station deployment. We selected and 
exhibited two typical vegetation degradation and greening examples 
respectively. 

Desertification is a severe ecological problem in northern China, 
which led to huge environmental and economic losses of about 54 
billion yuan per year (Tao, 2014; Zhang et al., 1996; Zhang and Hui-
singh, 2018). To improve the ecological conditions and combat desert-
ification, the Chinese government has implemented a series of ecological 
construction measures, such as popularizing water-saving agriculture in 
sandy areas or planting shrubs and trees to improve vegetation cover 
(Wang et al., 2010, 2012). However, the harsh ecological environment 
of low soil moisture content and high evaporation makes it difficult for 
plants to survive on sandy land. 

Some studies have shown that the deployment of PV power stations 
will change the regional microclimate, which can help improve the 
growing environment for plants in arid areas (Jiang et al., 2019; Yue 
et al., 2021; Wu et al., 2022). Usually, after deployment, PV power 
stations can effectively convert solar radiation and adjust the 

thermodynamic equilibrium in deserts, helping to prevent sandstorms 
and reduce aeolian sandflow (Chang et al., 2016). The height of PV 
panels is usually greater than 2.5 m, much higher than the general 
sand-fixing shrubbery. Therefore, PV panels and their brackets also can 
act as sand barriers to help combat desertification. When PV panels are 
deployed on a large scale, surface roughness is greatly increased and 
wind speed near the soil surface is reduced efficiently (Cui et al., 2017). 
In addition, as the PV panels block the solar radiation received at the 
underlying surface, this leads to a decrease in temperature below the 
panels (Wu et al., 2022). The lower temperature and weaker wind 
erosion reduce the evapotranspiration water loss and maintain a rela-
tively higher soil water content, mitigating environmental stress in de-
serts and facilitating vegetation restoration (Wu et al., 2022; Liu et al., 
2019). Since dust on the PV panel surface needs to be cleaned regularly 
in the desert, a large amount of cleaning water can also help to further 
elevate soil moisture content and promote vegetation growth (Cui et al., 
2017). 

In recent years, the Chinese government has carried out a series of 
Photovoltaic Desert Control Projects, aiming to combine the efforts to 
develop the solar PV sector with measures to control desertification 
(CGTN, 2017; The state council of the P.R.C., 2019; Cui et al., 2017). The 
Photovoltaic Desert Control Projects mainly focus on establishing 
tree-shrub belts around the PV power stations to reduce the impact of 
wind erosion on the PV power stations and plant green economic crops 
or psammophytic shrubs and herbaceous plants inside the PV power 
stations, which can facilitate sustainable economic, ecological and social 
prosperity in sandy ecosystems (Liu et al., 2020; Niu, 2021). Fig. 6c 
shows a Photovoltaic Desert Control Project in the Hobq Desert with a 
significant vegetation increase. 

In most deserts, the degradation area caused by the deployment of 
PV power stations is small, probably because the amount of vegetation 
in these areas is negligible before deployment. With the advancement of 
the Photovoltaic Desert Control Projects and the natural restoration of 
vegetation, the vegetation removed during the construction will also be 
restored later (Fig. S7). Desert vegetation degradation occurs mainly in 
MUS, which far exceeds the area of other deserts. Fig. 6b shows the 
deployment of a PV power station in MUS resulting in a significant 
vegetation reduction. In recent decades, large ecological restoration 
projects implemented by the government and favorable climatic change 
have promoted the growth of vegetation in MUS (Cai et al., 2020; Xu 

Fig. 5. Temporal variation of vegetation area (a) and vegetation abundance changes of PV power stations (c); The vegetation area (b) and vegetation abundance 
changes (d) in different deserts. 
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et al., 2018). The site preparation practices for the PV power stations 
deployment in areas with lush vegetation could make the degradation of 
desert vegetation more obvious. In 2019, the media reported a case of 
deforestation caused by a PV power station project in MUS, which was 
difficult to recover at a later stage (Xinhuanet, 2019), but this only 
happened in a few areas. 

In general, the desert greening (with a significant increase in vege-
tation) in China from PV power station deployment is largely promoted 
by the policy-driven Photovoltaic Desert Control Projects. However, the 
human activities effects on vegetation are often superimposed on the 
long-term climate-driven variations. But this trend can also relate to 
regional climate change. Desert vegetation is sensitive to temporal 
changes in climatic conditions, especially precipitation (Chen et al., 
2021b). Li et al. found a trend of increasing precipitation in Chinese 
deserts, providing favorable climatic conditions for vegetation recovery 
(Li et al., 2019). We used the daily rainfall dataset from CHIRPS (Funk 
et al., 2015) with a spatial resolution of 0.05◦ to calculate the average 
annual cumulative precipitation of PV power stations from 2011 to 

2019, and found a significant increasing trend of precipitation (Fig. S8). 
Thus, favorable climatic conditions are also important factors in vege-
tation growth. 

5.2. Ecological and economic benefits of solar PV programs in sandy 
ecosystems 

In the future, China’s solar PV programs will continue to expand 
rapidly and bring considerable ecological and economic effects in sandy 
ecosystems. In order to achieve carbon neutrality, China’s 14th Five- 
Year Plan for Renewable Energy development stipulates that renew-
able energy needs to account for more than 50% of the increase in 
electricity consumption by 2025. As part of the efforts to achieve this 
target, the Chinese government plans to build 450 GW (GW) of solar and 
wind power generation capacity in the Gobi and other desert regions. 
The construction of large-scale PV bases in desert areas can help mini-
mize costs and bring obvious economic benefits by making full use of 
unused land and bringing scale effect into play in renewable energy 

Fig. 6. The difference in average vegetation abundance before and after each PV power station deployment (a), examples of vegetation degradation (b) and greening 
(c). Photovoltaic desert control projects in the Hobq Desert (d–f).Image source: http://k.sina.com.cn/article_1882481753_7034645902000j4bk.html, https://www. 
imsilkroad.com/news/p/105775.html, and https://www.sdic.com.cn/cn/rmtzx/xwzx/gzdt/yqlb/webinfo/2021/06/phone1624715576565019.htm. 
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supply. 
Deserts account for 17% of the world’s land area, and widespread 

desertification is affecting more than 100 countries across the world. 
Our research reveals that developing PV power stations in deserts might 
help address the desertification challenges. We found the revegetation 
process along with PV development is happening at large scales, which 
expanded previous findings at small scales (Liu et al., 2020). This fully 
demonstrates that PV power stations in desert areas can provide addi-
tional ecological service value in addition to electricity benefits value. 
The United Nations “2030 Agenda for Sustainable Development” calls 
on countries worldwide to address SDG 15 by “combat desertification, 
and halt and reverse land degradation” (Weiland et al., 2021). China has 
taken a leading role in developing and implementing novel PV tech-
nologies to combat desertification. The PV program in China is also 
proven to improve the local communities’ livelihood, promoting sus-
tainable development in desert areas (Liu et al., 2020). Compared to 
traditional methods for combating desertification, PV power stations 
can provide considerable returns in the short term, which further en-
courages investment in PV power station deployment. Countries expe-
riencing serious desertification can learn from China’s success and adopt 
a similar PV program as a sustainable land-management practice in the 
deserts to promote vegetation restoration and further increase the car-
bon sink potential of sandy ecosystems. 

5.3. Limitations and future work 

To the best of our knowledge, this is the first attempt to analyze 
vegetation changes caused by large-scale deployment of PV power sta-
tions in desert areas. The results of our research can serve as a reference 
for future studies on the ecological impact of deploying PV power sta-
tions. Nevertheless, there are still some limitations that should be dis-
cussed and improved. 

Firstly, in the LSMA algorithm, endmembers’ number and spectral 
characteristics are constant even at different locations and times. 
Especially in areas with a large heterogeneity of land cover composi-
tions, ignoring the issues of endmember variability will increase the 
residual error (Li et al., 2021). To overcome this limitation and expand 
the study to a wider area, it is necessary to incorporate more endmem-
bers and select more appropriate methods, such as the Multiple End-
member Spectral Mixture Analysis (MESMA) model (Roberts et al., 
1998). In this study, high residual errors were found only in individual 
desert areas, due to the small spatial heterogeneity of desert areas. 

Secondly, our study revealed the benefits of desert greening achieved 
by Photovoltaic Desert Control Projects. In addition, the greening of the 
desert may also attribute to the changes in the hydrothermal environ-
ment, or other human activities after deployment (Li et al., 2018; Wu 
et al., 2014a, 2022). For example, water used for regular cleaning of PV 
panels provides a steady water supply to revegetation. It can be seen that 
these direct and indirect changes can still be linked to the deployment of 
PV power stations (Wu et al., 2014b). Although this study cannot fully 
explain the process and mechanism, the increased vegetation from PV 
development might facilitate future work on analyzing the environ-
mental impact of PV power stations in desert areas and the response of 
internal vegetation to temperature and precipitation. This can be done 
by distinguishing environmental impacts and anthropogenic impacts (e. 
g., weeding, ecological restoration, and watering from solar panel 
cleaning). However, due to the lack of data at the current stage, we were 
not able to include this analysis in this work. 

Finally, we focus more on vegetation abundance in our study, while 
other environmental changes such as the potential risk of affecting 
biodiversity in sandy ecosystems by the deployment of PV power sta-
tions deserve attention but are not covered in this study due to limited 
data (Graham et al., 2021; Grodsky and Hernandez, 2020). 

6. Conclusions 

This study used CCDC-SMA and the proposed PAVG fraction to 
analyze vegetation changes caused by large-scale deployment of PV 
power stations in desert areas. The results demonstrated that PV plants 
in China’s desert regions have expanded rapidly in recent years, 
reaching 102.56 km2 in 2018. The desert vegetation in the deployment 
area of PV power stations shows a greening trend. The greening area has 
reached 30.8 km2, which is mainly attributed to government-led 
Photovoltaic Desert Control Projects and favorable climatic conditions. 
These findings show the great benefits of PV power stations in 
combating desertification and help decision-makers in PV power station 
construction to better promote vegetation restoration and management 
in sandy ecosystems. As the rapid development of the PV industry brings 
new opportunities and challenges, more work is needed to evaluate the 
trade-offs between achieving multiple benefits by deploying PV power 
stations in desert areas. 
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